MEM®6810 Engineering Systems Modeling and Simulation
TREAGEES I E

Theory [“Analysis

Lecture 3: Queueing Models

SHEN Haihui JLIE1%
Sino-US Global Logistics Institute

Shanghai Jiao Tong University

@A shenhaihui.github.io/teaching/mem6810f
¥ shenhaihui@sjtu.edu.cn

Spring 2022 (full-time)

FEZMESYRARR
Y TUNG Insitote of Maritime and Logitics

hEMRI SR (T2 R G EIRH 5bR)

XELALY

SHANGHAI JIAO TONG UNIVERSITY

https://shenhaihui.github.io/teaching/mem6810f/
https://www.sjtu.edu.cn/
http://www.sugli.sjtu.edu.cn/
https://creativecommons.org/licenses/by-sa/4.0/

©® Queueing Systems and Models
» Introduction
» Characteristics & Terminology
» Kendall Notation

® Poisson Process
» Definition
» Properties

© Single-Station Queues
» Notations
» General Results
» Little's Law
» M/M/1 Queue
» M/M/s Queue
» M/M/oo Queue
» M/M/1/K Queue
» M/M/s/K Queue
» M/G/1 Queue

O Queueing Networks

» Jackson Networks

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

©® Queueing Systems and Models

» Introduction

» Characteristics & Terminology
» Kendall Notation

[@)BY-saA | SHEN Haihui

MEM®6810 Modeling and Simulation, Lec 3

Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Systems and Models » Introduction

e Queues (or waiting lines) are EVERYWHERE!

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Systems and Models » Introduction

e Queues (or waiting lines) are EVERYWHERE!

¢ Queues are an unavoidable component of modern life.
e E.g., in hospital, stores, bank, call center (online service), etc.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Systems and Models » Introduction

Figure: Queues in Hospital

[®)BY-sA | SHEN Haihui MEM6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Systems and Models » Introduction

Figure: Queues in Store (from The Sun)

(cc SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://www.thesun.co.uk/living/2844881/skip-starbucks-queue/
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

» Introduction

Figure: Queues in Campus (for COVID-19 Nucleic Acid Test)

[®)BY-sA | SHEN Haihui MEM6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Systems and Models » Introduction

Figure: Queues in Bank

(cc SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Systems and Models » Introduction

Figu re: Queues in Bank (No requirement to stand physically in queues)

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Systems and Models

wl FEBE 46 TF2:29 @ 7 0 79% mm)

X ELAER

HETHAE WA B 461, IR
DB~

BRe Y

LETHIA B AR R460, MIER
ISR~

Bme Y

YETHASIA B R425, MIER
NEF

me Y

HATHAE WA R 421, AR
DEFHE~

-+

Figure: Queue in Online Service

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Systems and Models » Introduction

e Queues (or waiting lines) are EVERYWHERE!

¢ Queues are an unavoidable component of modern life.
e E.g., in hospital, stores, bank, call center (online service), etc.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Systems and Models » Introduction

e Queues (or waiting lines) are EVERYWHERE!

e Queues are an unavoidable component of modern life.
e E.g., in hospital, stores, bank, call center (online service), etc.
e Although we don’t like standing in a queue, we appreciate the
fairness that it imposes.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Systems and Models » Introduction

e Queues (or waiting lines) are EVERYWHERE!

¢ Queues are an unavoidable component of modern life.

e E.g., in hospital, stores, bank, call center (online service), etc.
e Although we don’t like standing in a queue, we appreciate the
fairness that it imposes.

e Queues are not just for humans, however.
e E.g., email system, printer, manufacturing line, etc.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Systems and Models » Introduction

How Email Appears to Work
M &
Sender's Outbox |
& How Email &
Sender's Mail Clien Recipient's Mail Client
® Really Works i’

Company Network
-

Recipient’s Mail Server(s)
(MTA)

Figure: Queue in Mail Server (from[0ASIS)

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Sprin 22 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://www.oasis-open.org/khelp/kmlm/user_help/html/how_email_works.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Models

Queueing Systems a

_ o EN

L} HP Officelet Pro 8740
Printer Document View
Document Name Status Owner Pages Size Submitted
Microsoft Word - Document1 dwinels 1 106 KB 10:48:22 AM 8/12/2]
Microsoft Word - 403.067 Printing dwinels 1 277 KB/2TT KB 10:47:00 AM 8/12/2

<

| 2 document(s) in queue |

Figure: Queue in Printer

Spring 2022 (full-time)

@)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

s and Models » Introduction

Figure: Queues (Inventories) in Manufacturing Line (from Estes)

[®)BY-sA | SHEN Haihui MEM6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://www.estesdm.com/services/inventory-management/
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Systems and Models » Introduction

e Queues (or waiting lines) are EVERYWHERE!

¢ Queues are an unavoidable component of modern life.

e E.g., in hospital, stores, bank, call center (online service), etc.
e Although we don’t like standing in a queue, we appreciate the
fairness that it imposes.

e Queues are not just for humans, however.
e E.g., email system, printer, manufacturing line, etc.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Systems and Models » Introduction

e Queues (or waiting lines) are EVERYWHERE!

¢ Queues are an unavoidable component of modern life.
e E.g., in hospital, stores, bank, call center (online service), etc.
e Although we don't like standing in a queue, we appreciate the
fairness that it imposes.

e Queues are not just for humans, however.
e E.g., email system, printer, manufacturing line, etc.
e Manufacturing systems maintain queues (called inventories) of
raw materials, partly finished goods, and finished goods via the
manufacturing process.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Systems and Models » Introduction

e Typically, a queueing system consists of a stream of
“customers” (humans, goods, messages) that
e arrive at a service facility;
e wait in the queue according to certain discipline;
e get served;
e finally depart.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Systems and Models » Introduction

e Typically, a queueing system consists of a stream of
“customers” (humans, goods, messages) that
e arrive at a service facility;
e wait in the queue according to certain discipline;
e get served;
e finally depart.

e A lot of real-world systems can be viewed as queueing
systems, e.g.,
* service facilities
e production systems
e repair and maintenance facilities
e communications and computer systems
e transport and material-handling systems, etc.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Systems and Models » Introduction

e Typically, a queueing system consists of a stream of
“customers” (humans, goods, messages) that
e arrive at a service facility;
e wait in the queue according to certain discipline;
e get served;
e finally depart.

e A lot of real-world systems can be viewed as queueing
systems, e.g.,
* service facilities
e production systems
e repair and maintenance facilities
e communications and computer systems
e transport and material-handling systems, etc.

e Queueing models are mathematical representation of queueing
systems.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Systems and Models » Introduction

¢ Queueing models may be
e analytically solved using queueing theory when they are simple
(highly simplified); or
e analyzed through simulation when they are complex (more
realistic).

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Systems and Models » Introduction

e Queueing models may be
e analytically solved using queueing theory when they are simple
(highly simplified); or
e analyzed through simulation when they are complex (more
realistic).

e Studied in either way, queueing models provide us a powerful
tool for designing and evaluating the performance of queueing
systems.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Systems and Models » Introduction

e Queueing models may be
e analytically solved using queueing theory when they are simple
(highly simplified); or
e analyzed through simulation when they are complex (more
realistic).

e Studied in either way, queueing models provide us a powerful
tool for designing and evaluating the performance of queueing
systems.

e They help us do this by answering the following questions
(and many others):
@ How many customers are there in the queue (or station) on
average?
® How long does a typical customer spend in the queue (or
station) on average?
® How busy are the servers on average?

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Systems and Models » Introduction

e Simple queueing models solved analytically:

e Get rough estimates of system performance with negligible
time and expense.

e More importantly, understand the dynamic behavior of the
queueing systems and the relationships between various
performance measures.

e Provide a way to verify that the simulation model has been
programmed correctly.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Systems and Models » Introduction

e Simple queueing models solved analytically:

e Get rough estimates of system performance with negligible
time and expense.

e More importantly, understand the dynamic behavior of the
queueing systems and the relationships between various
performance measures.

e Provide a way to verify that the simulation model has been
programmed correctly.

o Complex queueing models analyzed through simulation:

o Allow us to incorporate arbitrarily fine details of the system
into the model.

e Estimate virtually any performance measure of interest with
high accuracy.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Systems and Models » Introduction

e Simple queueing models solved analytically:
e Get rough estimates of system performance with negligible
time and expense.
e More importantly, understand the dynamic behavior of the
queueing systems and the relationships between various
performance measures.

e Provide a way to verify that the simulation model has been
programmed correctly.

o Complex queueing models analyzed through simulation:

o Allow us to incorporate arbitrarily fine details of the system
into the model.

o Estimate virtually any performance measure of interest with
high accuracy.

e This lecture focuses on the classical analytically solvable
queueing models.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Systems and Models » Characteristics & Terminology

e The key elements of a queueing system are the customers
and servers.

e The term customer can refer to anything that arrives and
requires service.

e The term server can refer to any resource that provides the
requested service.

[@)BY-saA | SHEN Haihui

MEM®6810 Modeling and Simulation, Lec 3

Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Systems and Models » Characteristics & Terminology

e The key elements of a queueing system are the customers
and servers.

e The term customer can refer to anything that arrives and
requires service.

e The term server can refer to any resource that provides the
requested service.

e The term station means the entire or part of the system,
which contains all the identical servers and the queue.

[@)BY-saA | SHEN Haihui

MEM®6810 Modeling and Simulation, Lec 3

Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Systems and Models » Characteristics & Terminology

e The key elements of a queueing system are the customers
and servers.

e The term customer can refer to anything that arrives and
requires service.

e The term server can refer to any resource that provides the
requested service.

e The term station means the entire or part of the system,
which contains all the identical servers and the queue.

e Suppose that there is only one queue in one station.

[@)BY-saA | SHEN Haihui

MEM®6810 Modeling and Simulation, Lec 3

Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Systems and Models » Characteristics & Terminology

The key elements of a queueing system are the customers
and servers.

e The term customer can refer to anything that arrives and
requires service.

e The term server can refer to any resource that provides the
requested service.

e The term station means the entire or part of the system,
which contains all the identical servers and the queue.

e Suppose that there is only one queue in one station.

e Capacity is the maximal number of customers allowed in the
station.

e Number waiting in queue 4+ number having service.
e Finite or infinite.

[@)BY-saA | SHEN Haihui MEM6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Systems and Models » Characteristics & Terminology

e Single-station queueing system.
e Customers simply leave after service.
e E.g., customers arrive to buy coffee and then leave.

Station

Queue

Arrival Departure

—_

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Systems and Models » Characteristics & Terminology

e Single-station queueing system.
e Customers simply leave after service.
e E.g., customers arrive to buy coffee and then leave.

e Multiple-station queueing system (queueing network).
o Customers can move from one station to another (for different
service), before leaving the system.
e E.g., patients wait and get service at several different units
inside a hospital.

Station 2

Station

Station 1

Queue

Arrival

Departure
— —_—

SO0

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Systems and Models » Characteristics & Terminology

e The arrival process describes how the customers come.

e Arrivals may occur at scheduled times or random times.

e When at random times, the interarrival times are usually
characterized by a probability distribution.

o Customers may arrive one at a time or in batch (with constant
or random batch size).

¢ Different types of customers.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Systems and Models » Characteristics & Terminology

e The arrival process describes how the customers come.

e Arrivals may occur at scheduled times or random times.

e When at random times, the interarrival times are usually
characterized by a probability distribution.

o Customers may arrive one at a time or in batch (with constant
or random batch size).

¢ Different types of customers.

e An customer arriving at a station:

o if the station capacity is full:
- the external arrival will leave immediately (called lost);
- the internal arrival may wait in the previous station (may

block the previous server).

e if the station capacity is not full, enter the station:
- if there is idle server in the station, get service immediately;
- if all servers are busy, wait in the queue.

[@)BY-saA | SHEN Haihui MEM6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Systems and Models » Characteristics & Terminology

e Queue discipline: Which customer to serve first.
e First-in-first-out (FIFO), or first-come-first-served (FCFS).
e Last-in-first-out (LIFO), or last-come-first-served (LCFS).
e Shortest processing time first.
e Service according to priority (more than one customer types).

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 10 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Systems and Models » Characteristics & Terminology

e Queue discipline: Which customer to serve first.
e First-in-first-out (FIFO), or first-come-first-served (FCFS).
e Last-in-first-out (LIFO), or last-come-first-served (LCFS).
e Shortest processing time first.
e Service according to priority (more than one customer types).

e Queue behavior: Actions of customers while waiting.
o Balk: leave when they see that the line is too long.
¢ Renege: leave after being in the line when they see that the
line is moving too slowly.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 10 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Systems and Models » Characteristics & Terminology

e Queue discipline: Which customer to serve first.
e First-in-first-out (FIFO), or first-come-first-served (FCFS).
e Last-in-first-out (LIFO), or last-come-first-served (LCFS).
e Shortest processing time first.
e Service according to priority (more than one customer types).

e Queue behavior: Actions of customers while waiting.
o Balk: leave when they see that the line is too long.
¢ Renege: leave after being in the line when they see that the
line is moving too slowly.

e Service time is the duration of service in a server.
o Constant or random duration.
e May depend on the customer type.
e May depend on the time of day or the queue length.

[@)BY-saA | SHEN Haihui MEM6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Systems and Models » Characteristics & Terminology

e When without specification, the queueing models considered
in this lecture shall satisfy the following:

@ One customer type.

® Random arrivals (i.e., random interarrival times, iid.).
® No batch (or say, batch size is 1).f

O One queue in one station.

O First-come-first-served (FCFS).

® No balk, no renege.

@ Random service time (depends on nothing else), iid.

T

1+2+43 = The arrival process is a renewal process.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Systems and Models » Characteristics & Terminology

e When without specification, the queueing models considered
in this lecture shall satisfy the following:

@ One customer type.

® Random arrivals (i.e., random interarrival times, iid.).
® No batch (or say, batch size is 1).f

O One queue in one station.

O First-come-first-served (FCFS).

® No balk, no renege.

@ Random service time (depends on nothing else), iid.

e Even so, it is not that easy to analyze the queueing models!

T

1+2+43 = The arrival process is a renewal process.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 11 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Systems and Models » Kendall Notation

e Canonical notational system proposed by Kendall (1953):

X/Y/s/K.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://www.jstor.org/stable/2236285
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Systems and Models » Kendall Notation
e Canonical notational system proposed by Kendall (1953):

X/Y/s/K.
e X represents the interarrival-time distribution.

- M: Memoryless, i.e., exponential interarrival times;
- G: General;
- D: Deterministic.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://www.jstor.org/stable/2236285
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Systems and Models » Kendall Notation
e Canonical notational system proposed by Kendall (1953):

X/Y/s/K.
e X represents the interarrival-time distribution.

- M: Memoryless, i.e., exponential interarrival times;
- G: General;
- D: Deterministic.

e Y represents the service-time distribution.
- Same letters as the interarrival times.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://www.jstor.org/stable/2236285
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Systems and Models » Kendall Notation
e Canonical notational system proposed by Kendall (1953):

X/Y/s/K.
e X represents the interarrival-time distribution.

- M: Memoryless, i.e., exponential interarrival times;
- G: General;
- D: Deterministic.

e Y represents the service-time distribution.
- Same letters as the interarrival times.
* s represents the number of parallel servers.

- Finite value.
- For infinite number of servers, s is replaced by oc.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://www.jstor.org/stable/2236285
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Systems and Models » Kendall Notation

e Canonical notational system proposed by Kendall (1953):

X/Y/s/K.
e X represents the interarrival-time distribution.

- M: Memoryless, i.e., exponential interarrival times;
- G: General;
- D: Deterministic.

e Y represents the service-time distribution.
- Same letters as the interarrival times.
* s represents the number of parallel servers.
- Finite value.
- For infinite number of servers, s is replaced by oc.
e K represents the station capacity.
- Finite value.
- For infinite capacity, K is replaced by oo, or simply omitted.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 12 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://www.jstor.org/stable/2236285
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Systems and Models » Kendall Notation

e Canonical notational system proposed by Kendall (1953):

X/Y/s/K.
e X represents the interarrival-time distribution.

- M: Memoryless, i.e., exponential interarrival times;
- G: General;
- D: Deterministic.

e Y represents the service-time distribution.
- Same letters as the interarrival times.
* s represents the number of parallel servers.

- Finite value.
- For infinite number of servers, s is replaced by oc.

e K represents the station capacity.

- Finite value.
- For infinite capacity, K is replaced by oo, or simply omitted.

o Examples: M/M/1, M/G/1, M/M/s/K.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 12 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://www.jstor.org/stable/2236285
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

® Poisson Process
» Definition
» Properties

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 13 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Poisson Process » Definition

e A stochastic process {N(t), t > 0} is said to be a counting
process if N(t) represents the total number of arrivals that
have occurred up to time t.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 14 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Poisson Process » Definition

e A stochastic process {N(t), t > 0} is said to be a counting
process if N(t) represents the total number of arrivals that
have occurred up to time t.

N(t)
4 —
2 —
f_é
0 t

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 14 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Poisson Process » Definition

e A stochastic process {N(t), t > 0} is said to be a counting
process if N(t) represents the total number of arrivals that
have occurred up to time t.

N()t
4t —
2+ —_—
R R S RS A L

o Let {X,,, n > 1} denote the interarrival times:

e X; denotes the time of the first arrival;
e Forn > 2, X,, denotes the time between the (n — 1)st and the
nth arrivals.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 14 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Poisson Process » Definition

¢ Definition 1. The counting process {N(t), t > 0} is called a
Poisson process with rate A\, A > 0, if:
e N(0) =0;
e The process has independent and stationary increments;
e Fort >0, N(t) ~ Pois(At), i.e.,

P(N(t) =n) :e_)‘t();lﬁ, n=20,1,2,....

Poisson process C renewal process C counting process.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Poisson Process » Definition

¢ Definition 1. The counting process {N(t), t > 0} is called a
Poisson process with rate A\, A > 0, if:
e N(0) =0;
e The process has independent and stationary increments;
e Fort >0, N(t) ~ Pois(At), i.e.,

P(N(t) =n) :e_)‘t();lﬁ, n=20,1,2,....

e Independent Increments: The numbers of arrivals in disjoint
time intervals are independent.

Poisson process C renewal process C counting process.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 15 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Poisson Process » Definition

¢ Definition 1. The counting process {N(t), t > 0} is called a
Poisson process with rate A\, A > 0, if:
e N(0) =0;
e The process has independent and stationary increments;
e Fort >0, N(t) ~ Pois(At), i.e.,

P(N(t) =n) :e_)‘t();lﬁ, n=20,1,2,....

e Independent Increments: The numbers of arrivals in disjoint
time intervals are independent.

e Stationary Increments: The distribution of number of arrivals
in any time interval depends only on the length of time
interval, i.e., for s < t, the distribution of N(t) — N(s)
depends only on t — s.

Poisson process C renewal process C counting process.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 15 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Poisson Process » Definition

¢ Definition 2. The counting process {N(t), t > 0} is called a
Poisson process with rate A\, A > 0, if:
e N(0) =0;
e The process has independent and stationary increments;
« P(N(t) =1) = At + o(t);
e P(N(t) > 2) =o(t).

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 16 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Poisson Process » Definition

¢ Definition 2. The counting process {N(t), t > 0} is called a
Poisson process with rate A\, A > 0, if:
e N(0) =0;
e The process has independent and stationary increments;
« P(N(t) =1) = At + o(t);
e P(N(t) > 2) =o(t).

¢ Definition 3. The counting process {N(t), t > 0} is called a
Poisson process with rate A\, A > 0, if:
« N(0) = 0;
e {X,, n>1}is a sequence of iid random variables, and
X, ~ Exp(}N).

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 16 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Poisson Process » Definition

¢ Definition 2. The counting process {N(t), t > 0} is called a
Poisson process with rate A\, A > 0, if:
e N(0) =0;
e The process has independent and stationary increments;
« P(N(t) =1) = At + o(t);
e P(N(t) > 2) =o(t).

¢ Definition 3. The counting process {N(t), t > 0} is called a
Poisson process with rate A\, A > 0, if:
« N(0) = 0;
e {X,, n>1}is a sequence of iid random variables, and
X, ~ Exp(}N).

e Definition 1, Definition 2 and Definition 3 are equivalent.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 16 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Poisson Process » Properties

e Question 1: When will the next appear?

Standing here, ask, when will the 3™ arrival occur?

TR K K X

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Poisson Process » Properties

e Question 1: When will the next appear?

Standing here, ask, when will the 3™ arrival occur?

04 Xl ‘ XZ 14 X3 T4)(4-1 X5 ¢

P(Xs —a> z|X3 > a)

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Poisson Process » Properties

e Question 1: When will the next appear?

Standing here, ask, when will the 3™ arrival occur?

P(X3—a >z X3 >a)
P(X3 > a)

P(Xs—a>z|X3 >a)=

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Poisson Process » Properties

e Question 1: When will the next appear?

Standing here, ask, when will the 3™ arrival occur?

P(X3—a >z, X3 > a)
P(X3 > a)

_ P(Xz>a+z X3>a)

- P(X3 > a)

P(Xs—a>z|X3 >a)=

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Poisson Process » Properties

e Question 1: When will the next appear?

Standing here, ask, when will the 3™ arrival occur?

a ?
0 ——re——sn s t

P(X3—a >z, X3 > a)
P(X3 > a)

_ P(Xz>a+z X3>a)

- P(X3 > a)

_P(X3>a+2x)

-]P)(X3 > a)

P(Xs—a>z|X3 >a)=

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Poisson Process » Properties

e Question 1: When will the next appear?

Standing here, ask, when will the 3™ arrival occur?
* *

aﬁl ?
0 4 a | R > t

X1 ' X, L Xs Xy Xs

P(X3—a >z, X3 > a)
P(X3 > a)

_ P(Xz>a+z X3>a)

- P(X3 > a)

_P(X3>a+2x)

-]P(X3 > a)

o Mata)

= — =€

e—Aa

P(Xs—a>z|X3 >a)=

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Poisson Process » Properties

e Question 1: When will the next appear?

Standing here, ask, when will the 3™ arrival occur?
* *

aﬁl ?
0 4 a | R > t

X1 ' X, L Xs Xy Xs

P(X3—a >z, X3 > a)
P(X3 > a)

_ P(Xz>a+z X3>a)

- P(X3 > a)

_P(X3>a+2x)

-]P(X3 > a)

e—)\(a+x) e

= —e (Not related to a!)

P(Xs—a>z|X3 >a)=

17 / 64

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Poisson Process » Properties

e Question 1: When will the next appear?

Standing here, ask, when will the 3™ arrival occur?
a | ?

X, Xy Xs X, Xs

P(X3—a >z, X3 > a)
P(X3 > a)

_ P(Xz>a+z X3>a)

- P(X3 > a)

_P(X3>a+2x)

o]P’(X3 > a)

e—)\(a+x) e

= —¢ - (Not related to al)

P(Xs—a>z|X3 >a)=

e The Poisson process has no memory! (equivalent to the
independent and stationary increments assumption)

17 / 64

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Poisson Process » Properties

o Let S, = X7+ X9+ ---+ X, be the arrival time of the nth

arrival.
e Question 2: If | only know there are n arrivals up to time ¢,
what can | say about the n arrival times S1,...,.5,7

18 / 64

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Poisson Process » Properties

o Let S, = X7+ X9+ ---+ X, be the arrival time of the nth
arrival.

e Question 2: If | only know there are n arrivals up to time ¢,
what can | say about the n arrival times S1,...,.5,7

e A simplified case:

I'm only told that up to time t, one arrival has occurred.
What is the distribution of that arrival time S; (= X;) ?

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Poisson Process » Properties

o Let S, = X7+ X9+ ---+ X, be the arrival time of the nth
arrival.

e Question 2: If | only know there are n arrivals up to time ¢,
what can | say about the n arrival times S1,...,.5,7
e A simplified case:

I'm only told that up to time t, one arrival has occurred.
What is the distribution of that arrival time S; (= X;) ?

0 t

e Intuition:

e Since Poisson process possesses independent and stationary
increments, each interval of equal length in [0, ¢] should have
the same probability of containing the arrival.

* Hence, the arrival time should be uniformly distributed on [0, ¢].

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 18 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Poisson Process » Properties

Proof.

P{X, < s|N(t) = 1}

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 19 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Poisson Process » Properties

Proof.

P{X; < s, N(t) =1}

PXe<sINO =1 = =y =13

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 19 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Poisson Process » Properties

Proof.

P{X; <s|N(t)=1} = P{X; <s N(t) =1}

P{N(t) =1}
_ P{1 arrival in [0, 5), 0 arrival in [s,)}
- P{N(t) =1}

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Poisson Process » Properties

Proof.
P{X: <s, N(t) =1}
P{N(t) = 1}
_ P{1 arrival in [0, 5), 0 arrival in [s,)}
B P{N(t) =1}
__ IP{1 arrival in [0, 5)} P{O arrival in [s,t)}
- P{N(t) =1}

P{X; < s|N(t) =1} =

(independent)

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 19 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Poisson Process » Properties

Proof.

P{X: <s, N(t) =1}
P{N(t) = 1}

_ P{1 arrival in [0, 5), 0 arrival in [s,)}

B P{N(t) =1}

__ IP{1 arrival in [0, 5)} P{O arrival in [s,t)}

- P{N(t) = 1}

_ P{N(s) =1} P{N(t —s) =0}

P{N(t) = 1}

P{X; < s|N(t) =1} =

(independent)

(stationary)

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 19 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Poisson Process » Properties

Proof.

P{X: <s, N(t) =1}
P{N(t) = 1}
_ P{1 arrival in [0, 5), 0 arrival in [s,)}
B P{N(t) =1}
__ IP{1 arrival in [0, 5)} P{O arrival in [s,t)}
- P{N(t) = 1}
_ P{N(s) =1} P{N(t —s) =0}
P{N(t) = 1}
e \ge—AE—9)
e~ Mt

P{X; < s|N(t) =1} =

(independent)

(stationary)

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Poisson Process » Properties

Proof.

P{X: <s, N(t) =1}

P{N(t) = 1}
_ P{1 arrival in [0, 5), 0 arrival in [s,)}
B P{N(t) =1}
__ IP{1 arrival in [0, 5)} P{O arrival in [s,t)}

P{N(t) = 1}

ELEEE LR -
e \ge—AE—9)

e~ Mt

P{X; < s|N(t) =1} =

(independent)

kil
-

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Poisson Process » Properties

Proof.

P{X: <s, N(t) =1}

P{N(t) = 1}
_ P{1 arrival in [0, 5), 0 arrival in [s,)}
B P{N(t) =1}
__ IP{1 arrival in [0, 5)} P{O arrival in [s,t)}
- P{N(t) = 1}
ELEEE LR -
e \ge—AE—9)

e~ Mt

P{X; < s|N(t) =1} =

(independent)

kil
-

e Remark: This result can be generalized to n arrivals.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Poisson Process » Properties

Property (Conditional Distribution of Arrival Times)

Given that N (t) = n, the n arrival times Sy, ..., S, have the
same distribution as the order statistics corresponding to n
independent RVs uniformly distributed on the interval (0, ¢).

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Poisson Process » Properties

Property (Conditional Distribution of Arrival Times)

Given that N (t) = n, the n arrival times Sy, ..., S, have the
same distribution as the order statistics corresponding to n
independent RVs uniformly distributed on the interval (0, ¢).

e |llustration:

Given N(t) = n, how can | generate a sample of {S3,S,, ..., S} ?

L

0 t

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Poisson Process » Properties

Property (Conditional Distribution of Arrival Times)

Given that N (t) = n, the n arrival times Sy, ..., S, have the
same distribution as the order statistics corresponding to n
independent RVs uniformly distributed on the interval (0, ¢).

e |llustration:

Given N(t) = n, how can | generate a sample of {S3,5,, ..., S} ?
n iid samples of uniform RV l

0 t

1. Uniformly and independently sample n points on [0, t].

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Poisson Process » Properties

Property (Conditional Distribution of Arrival Times)

Given that N (t) = n, the n arrival times Sy, ..., S, have the
same distribution as the order statistics corresponding to n
independent RVs uniformly distributed on the interval (0, ¢).

e lllustration:
Given N(t) = n, how can | generate a sample of {S3,5,, ..., S} ?
n iid samples of uniform RV l
0 4 4 4 t
51 SZ Sn
1. Uniformly and independently sample n points on [0, t].
2. From small to large, call them Sy, S5, ..., Sy,

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Poisson Process » Properties

Property (Conditional Distribution of Arrival Times)

Given that N (t) = n, the n arrival times Sy, ..., S, have the
same distribution as the order statistics corresponding to n
independent RVs uniformly distributed on the interval (0, ¢).

e lllustration:
Given N(t) = n, how can | generate a sample of {S3,5,, ..., S} ?
n iid samples of uniform RV l
0 4 4 4 t
51 SZ Sn
1. Uniformly and independently sample n points on [0, t].
2. From small to large, call them Sy, S5, ..., Sy,

e This is very nice for simulation!

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

© Single-Station Queues
» Notations
» General Results
» Little's Law
» M/M/1 Queue
» M/M/s Queue
» M/M/oo Queue
» M/M/1/K Queue
» M/M/s/K Queue
» M/G/1 Queue

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » Notations

e Let L(t) denote the number of customers in the station at
time ¢.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 22 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://www.pearson.com/us/higher-education/program/Banks-Discrete-Event-System-Simulation-5th-Edition/PGM130682.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » Notations

e Let L(t) denote the number of customers in the station at

time ¢.
L(r)
3 —
[
[
[
[
|
2 ‘_‘;_“
|
| |
I I
I I
o
|
1 [| | |
[| | |
[I I I
[I I I
N L |
R S O H RN PO NN TR RN RO B
0 2 4 6 8 10 12 14 16 18 T=20 1

Figure: Illustration of L(t) (from [Banks et al. (2010))

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 22 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://www.pearson.com/us/higher-education/program/Banks-Discrete-Event-System-Simulation-5th-Edition/PGM130682.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » Notations

e Let L(t) denote the number of customers in the station at

time ¢.
L(1)
3 —
[
[
[
[
|
2 ‘_‘;_“
|
| |
I I
I I
o
|
1 [| | |
[| | |
[I I I
[I I I
N L |
R S O H RN PO NN TR RN RO B
0 2 4 6 8 10 12 14 16 18 T=20 1

Figure: Illustration of L(t) (from [Banks et al. (2010))

o Let L(T) denote the (time-weighted) average number of
customers in the station up to time 71"

L(T) = L [L(t)dt.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 22 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://www.pearson.com/us/higher-education/program/Banks-Discrete-Event-System-Simulation-5th-Edition/PGM130682.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » Notations

o Another expression of L(T): Let T}, denote the total time
during [0, T'] in which the station contains exactly n customers.

L(t)
| |
| |
|
ool
e - T
| |
-
T 7 I T,
1 1 - 1! ! 1 , ; 1 :
P | | |
P i i i
I | | |
R R R R R N R
0 2 4 6 8 10 12 14 16 18 T-20 1
Figure: Illustration of L(t) (from |Banks et al. (2010))
00 T,
¢ Tfo dt—TZ “onTn =Y 0lon ()

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 23 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://www.pearson.com/us/higher-education/program/Banks-Discrete-Event-System-Simulation-5th-Edition/PGM130682.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » Notations

e Suppose during time [0, 7], totally N(T") customers have
entered the station, and let Wy, Wy, ..., WN(T) denote the
time each customer spends in the station up to time 7%

TThe time includes both the waiting time in queue and the time in server. The part after 7" is not counted.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 24 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » Notations

e Suppose during time [0, 7], totally N(T") customers have
entered the station, and let Wy, Wy, ..., WN(T) denote the
time each customer spends in the station up to time 7%

o Let /V[7(T) denote the average sojourn time (FZ®ZH[A]) in the
station up to time 7"
N

G

I¥
._.

%

TThe time includes both the waiting time in queue and the time in server. The part after 7" is not counted.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 24 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » Notations

e Suppose during time [0, 7], totally N(T") customers have
entered the station, and let Wy, Wy, ..., WN(T) denote the
time each customer spends in the station up to time 7%

o Let /V[7(T) denote the average sojourn time (ZZE4HJ[A]) in the
station up to time 7"

2
=

@
Il
._.

e In a similar way, we can also define

. ZQ(T) — The average number of customers in the queue up to
time T'.

o /WQ(T) — The average waiting time in the queue up to time T.

TThe time includes both the waiting time in queue and the time in server. The part after 7" is not counted.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 24 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » Notations

e Now we consider the long-run measures.
e L — The long-run average number of customers in the station:

L= lim L(T).
T—o0
e W — The long-run average sojourn time in the station:
W= lim W(T).
T—o0
e Lo — The long-run average number of customers in the queue:
Lo = lim Lg(T).
Q= Jim Lq(T)
e Wg — The long-run average waiting time in the queue:

WQ = Th_r}éo WQ (T)

Spring 2022 (full-time)

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » Notations

e Now we consider the long-run measures.
e L — The long-run average number of customers in the station:

L= lim L(T).
T—o0
e W — The long-run average sojourn time in the station:
W= lim W(T).
T—o0
e Lo — The long-run average number of customers in the queue:
Lo = lim Lg(T).
Q= Jim Lq(T)
e Wg — The long-run average waiting time in the queue:

WQ = Th_r}éo WQ (T)

e Question: When will L, W, Lg and W exist (and < 00)?

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 25 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » Notations

e We also define the limiting probability that there will be
exactly n customers in the station as time goes to infinity:

P, = lim P{L(t)=n}, n=0,1,2,....
t—o0

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 26 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » Notations

e We also define the limiting probability that there will be
exactly n customers in the station as time goes to infinity:

P, = lim P{L(t)=n}, n=0,1,2,....
t—o0

e Question: When will P, exist?

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » Notations

e We also define the limiting probability that there will be
exactly n customers in the station as time goes to infinity:

P, = lim P{L(t)=n}, n=0,1,2,....
t—o0

e Question: When will P, exist?

o Moreover, for an arbitrary X/Y/s/K queue
e Let A\ denote the arrival rate, i.e.,

. . . 1
Elfinterarrival time] = T
e Let p denote the service rate in one server, i.e.,

1
E[service time] = —.
w

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » General Results

e Question: When will L, W, Lg, Wg and P, exist?

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 27 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » General Results

e Question: When will L, W, Lg, Wg and P, exist?

e Answer: When the queue is stable.!

TThat is to say, the underlying Markov chain is positive recurrent.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 27 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » General Results

e Question: When will L, W, Lg, Wg and P, exist?
e Answer: When the queue is stable.!

e Question: When will the queue be stable?!

TThat is to say, the underlying Markov chain is positive recurrent.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » General Results

e Question: When will L, W, Lg, Wg and P, exist?
e Answer: When the queue is stable.!

e Question: When will the queue be stable?!

Theorem 1 (Condition of Stability)

For an X/Y/s/oco queue (i.e., infinite capacity) with arrival
rate A and service rate p, it is stable if

A < sp.

And, an X/Y/s/K queue (i.e., finite capacity) will always
be stable.

TThat is to say, the underlying Markov chain is positive recurrent.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » General Results

e Recall that P, == limy ,oo P{L(t) =n}, n=0,1,2,....

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 28 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » General Results

e Recall that P, == limy ,oo P{L(t) =n}, n=0,1,2,....

e P, is also called the probability that there are exactly n
customers in the station when it is in the steady state.
e Since the system is stable and run for infinitely long time, it
should enters some steady state (i.e., has nothing to do with
the initial state).

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 28 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » General Results

e Recall that P, == limy ,oo P{L(t) =n}, n=0,1,2,....

e P, is also called the probability that there are exactly n
customers in the station when it is in the steady state.
e Since the system is stable and run for infinitely long time, it
should enters some steady state (i.e., has nothing to do with
the initial state).

e L can also be written as L :=) >° ' nP, (see next slide).

e L is also called the expected number of customers in the
station in steady state;

e W is also called the expected sojourn time in the station in
steady state;

e Lq is also called the expected number of customers in the
queue in steady state;

e Wy is also called the expected waiting time in the queue in
steady state.

[@)BY-saA | SHEN Haihui MEM6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 28 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » General Results

e Recall that P,, .= limy_,oc P{L(t) =n}, n=0,1,2,....

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 29 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » General Results

e Recall that P,, .= limy_,oc P{L(t) =n}, n=0,1,2,....

e It turns out that, when the queue is stable, P, also equals the
long-run proportion of time that the station contains exactly n
customers,! i.e., with probability 1, for all n,

amount of time during [0, T'] that station contains n customers

Pn = fim. T

TA sufficient condition is that the queueing process is regenerative, which is satisfied in our discussion.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 29 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » General Results

e Recall that P,, .= limy_,oc P{L(t) =n}, n=0,1,2,....

e It turns out that, when the queue is stable, P, also equals the
long-run proportion of time that the station contains exactly n
customers,! i.e., with probability 1, for all n,

p i amount of time during [0, T'] that station contains n customers
= limm .
" T—o00 T

o Recall L(T) =L [T L(t)dt = 7% 0 (L), then

TA sufficient condition is that the queueing process is regenerative, which is satisfied in our discussion.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 29 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » General Results

e Recall that P,, .= limy_,oc P{L(t) =n}, n=0,1,2,....

e It turns out that, when the queue is stable, P, also equals the
long-run proportion of time that the station contains exactly n
customers,! i.e., with probability 1, for all n,

amount of time during [0, T'] that station contains n customers

P, =1
" TE;I;O T
o Recall L(T) =L [TL =50 n (%), then
L = (T
B M= 2 (?)

TA sufficient condition is that the queueing process is regenerative, which is satisfied in our discussion.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 29 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » General Results

e Recall that P,, .= limy_,oc P{L(t) =n}, n=0,1,2,....

e It turns out that, when the queue is stable, P, also equals the
long-run proportion of time that the station contains exactly n
customers,! i.e., with probability 1, for all n,

amount of time during [0, T'] that station contains n customers

Fu= i, T
o Recall L(T) =L [T L(t)dt = 7% 0 (L), then
. T . - Tn
B MO =, 2 n (%)
— . T,
= 2 Tlgi;on <?> (by DCT)

TA sufficient condition is that the queueing process is regenerative, which is satisfied in our discussion.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 29 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » General Results

e Recall that P,, .= limy_,oc P{L(t) =n}, n=0,1,2,....

e It turns out that, when the queue is stable, P, also equals the
long-run proportion of time that the station contains exactly n
customers,! i.e., with probability 1, for all n,

amount of time during [0, T'] that station contains n customers

Fu= i, T
o Recall L(T) =L [T L(t)dt = 7% 0 (L), then
. T . - Tn
B MO =, 2 n (%)

— . T,

= 2 Tlgi;on <?> (by DCT)

= ZnPn.
n=0

TA sufficient condition is that the queueing process is regenerative, which is satisfied in our discussion.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 29 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » Little's Law

e Little's Law (5FE /7 #2) is one of the most general and
versatile laws in queueing theory.
e It is named after John D.C. Little, who was the first to prove a

version of it, in 1961.
e When used in clever ways, Little's Law can lead to remarkably

simple derivations.

Spring 2022 (full-time)

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » Little's Law

e Little's Law (5FE /7 #2) is one of the most general and
versatile laws in queueing theory.
e It is named after John D.C. Little, who was the first to prove a

version of it, in 1961.
e When used in clever ways, Little's Law can lead to remarkably

simple derivations.

Theorem 2 (Little's Law — Empirical Version)

Define the observed entering rate A := N(T)/T, then
L(T) = AW(T), Lo(T) = AWq(T).

Spring 2022 (full-time)

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » Little's Law

e Verify Little's Law.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 31 /64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://www.pearson.com/us/higher-education/program/Banks-Discrete-Event-System-Simulation-5th-Edition/PGM130682.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » Little's Law

L(1)

[Q)svsa |

e Verify Little's Law.

L(1)
T3
I I B I I
[W
I I <
I I I
I I I
[i
S L |
: : R SR
i i w.
| | 3
I I
i i
T, T, 1 | T, T,
I _h I
P] h] 1 o W i]
[I I I [4 I I
. [| . LW | |
[| I I Wi W, i Ws
7, L | o ! A
1 ! ! ! ! L0 ! ! L1 ! ! | ! ! !
2 4 6 8 10 12 14 16 18 T=2 ¢ 0 2 4 6 8 10 12 14 16 18 T=20 1

Figure: lllustration of L(t) and W;

SHEN Haihui

MEM®6810 Modeling and Simulation,

(from | Banks et al. (2010))

Lec 3 Spring 2022 (full-time)

31/ 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://www.pearson.com/us/higher-education/program/Banks-Discrete-Event-System-Simulation-5th-Edition/PGM130682.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » Little's Law

e Verify Little's Law.

L(1) L()
T3
3= — 3= ™
. W
I I <
I I I
I I I
b |
S |
. s I) ok PR B S
I I I W,
I I I 4
| |
I I vV]
| |
T, T, 1 | T, T,
I A S I
T L : T v, : :
P P | P Wy : :
[| I I Wi W, i Ws
7! L | [1 | |
1 ! ! ! ! L0 ! ! L1 ! ! | ! ! !
0 2 4 6 8§ 10 12 14 16 18 T=20 1 0 2 4 6 8 10 12 14 16 18 T=20 ¢

Figure: Illustration of L(t) and W (from Banks et al. (2010))

X =N(T)/T =5/20 = 0.25.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 31 /64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://www.pearson.com/us/higher-education/program/Banks-Discrete-Event-System-Simulation-5th-Edition/PGM130682.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » Little's Law

e Verify Little's Law.

L(1) L()
T3
3= — 3= ™
. W
I I <
I I I
I I I
b |
S |
. s I) ok PR B S
I I I W,
i | ! f
| |
I I vV]
| |
T, T, 1 | T, T,
I A S I
T L : T v, : :
P P | P W, : :
[| I I Wi W, i Ws
" i ol o
1 ! ! ! ! L0 ! ! L1 ! ! | ! ! !
0 2 4 6 8§ 10 12 14 16 18 T=20 1 0 2 4 6 8 10 12 14 16 18 T=20 ¢

Figure: Illustration of L(t) and W (from Banks et al. (2010))

X =N(T)/T =5/20 = 0.25.
W(T) = i LD W = L2 +5+54T+4) = 2 =46

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 31 /64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://www.pearson.com/us/higher-education/program/Banks-Discrete-Event-System-Simulation-5th-Edition/PGM130682.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » Little's Law

e Verify Little's Law.

L(1) L()
T3
3= — 3= ™
. W
I I <
I I I
I I I
b |
S |
. s I) ok PR B S
I I I W,
i | ! f
| |
I I vV]
| |
T, T, 1 | T, T,
I A S I
T L : T v, : :
P P | P W, : :
[| I I Wi W, i Ws
" i ol o
1 ! ! ! ! L0 ! ! L1 ! ! | ! ! !
0 2 4 6 8§ 10 12 14 16 18 T=20 1 0 2 4 6 8 10 12 14 16 18 T=20 ¢

Figure: Illustration of L(t) and W (from Banks et al. (2010))

X =N(T)/T =5/20 = 0.25.
wW(T):N(T)ZN(T)Wz—%(2+5+5+7+4):§=4.6.
L(

T)=a> 0 onTy=55(0x3+1x12+2x4+3x1) =23 =115

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 31 /64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://www.pearson.com/us/higher-education/program/Banks-Discrete-Event-System-Simulation-5th-Edition/PGM130682.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » Little's Law

e Verify Little's Law.

L() L)
T3
3= — 3= ™
. W
I I <
I I I
I I I
b |
S |
. s I) ok PR B S
I I I W,
| | | 4
| |
I I vVJ
| |
T, T, 1 | T, T,
I A S I
T L : T v, : :
P P | P W, : :
[i | | Wi W, | Ws
7! L | [1 |
1 ! ! ! ! L0 ! ! L1 ! ! | ! !
0 2 4 6 8 10 12 14 16 18 T=20

P
S
IS
=
=L-
3
~
[}
w
8

t 0 2 4 6

Figure: Illustration of L(t) and W (from Banks et al. (2010))

X =N(T)/T =5/20 = 0.25.
W(T) = wim S W, = %(2+5+5+7+4)=§=4.6.

L(T)= A2 T = 5 (0x3+1x12+2x4+3x1) =2 = 1.15.

So, A\W(T') = 0.25 x 4.6 = 1.15 = L(T).

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 31 /64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://www.pearson.com/us/higher-education/program/Banks-Discrete-Event-System-Simulation-5th-Edition/PGM130682.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » Little's Law

e Verify Little's Law.

L() L)
T3
3= — 3= ™
. W
I I <
I I I
I I I
b |
S |
. s I) ok PR B S
I I I W,
| | | 4
| |
I I vVJ
| |
T, T, 1 | T, T,
I A S I
T L : T v, : :
P P | P W, : :
[i | | Wi W, | Ws
7! L | [1 |
1 ! ! ! ! L0 ! ! L1 ! ! | ! !
0 2 4 6 8 10 12 14 16 18 T=20

P
S
IS
=
=L-
3
~
[}
w
8

t 0 2 4 6

Figure: Illustration of L(t) and W (from Banks et al. (2010))

X =N(T)/T =5/20 = 0.25.
W(T) = wim S W, = %(2+5+5+7+4)=§=4.6.

L(T)= A2 T = 5 (0x3+1x12+2x4+3x1) =2 = 1.15.

So, A\W(T) =0.25 x 4.6 = 1.15 = L(T). (Why it always holds?)

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 31 /64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://www.pearson.com/us/higher-education/program/Banks-Discrete-Event-System-Simulation-5th-Edition/PGM130682.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » Little's Law

e Verify Little's Law.

L() L)
T3
3= — 3= ™
. W
I I <
I I I
I I I
b |
S |
. s I) ok PR B S
I I I W,
I I I 4
| |
I I vV]
| |
T, T, 1 | T, T,
I n 0 n I
T L : T v, : :
P P | P W : :
[| I I Wi W, i Ws
7! L | o A
1 ! ! ! ! L0 ! ! L1 ! ! | ! ! !
0 2 4 6 8§ 10 12 14 16 18 T=20 1 0 2 4 6 8 10 12 14 16 18 T=20 ¢

Figure: Illustration of L(t) and W (from Banks et al. (2010))

e Why it always holds?

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 31 /64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://www.pearson.com/us/higher-education/program/Banks-Discrete-Event-System-Simulation-5th-Edition/PGM130682.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » Little's Law

e Verify Little's Law.

L() L)
T3
3= — 3= ™
. W
I I <
I I I
I I I
b |
S |
. s I) ok PR B S
I I I W,
I I I 4
| |
I I vV]
| |
T, T, 1 | T, T,
I n 0 n I
T L : T v, : :
P P | P W : :
[| I I Wi W, i Ws
7! L | o A
1 ! ! ! ! L0 ! ! L1 ! ! | ! ! !
0 2 4 6 8§ 10 12 14 16 18 T=20 1 0 2 4 6 8 10 12 14 16 18 T=20 ¢

Figure: Illustration of L(t) and W (from Banks et al. (2010))

e Why it always holds?
L(T) = L2 nT, = 4 x area.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 31 /64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://www.pearson.com/us/higher-education/program/Banks-Discrete-Event-System-Simulation-5th-Edition/PGM130682.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » Little's Law

e Verify Little's Law.

L(1) L()
T3
3= — 3= ™
. W
I I <
I I I
I I I
b |
S |
. s I) ok PR B S
I I I W,
i | ! f
| |
I I vV]
| |
T, T, 1 | T, T,
I A S I
T L : T v, : :
P P | P s : :
[| I I Wi W, i Ws
" i ol o
1 ! ! ! ! L0 ! ! L1 ! ! | ! ! !
0 2 4 6 8§ 10 12 14 16 18 T=20 1 0 2 4 6 8 10 12 14 16 18 T=20 ¢

Figure: Illustration of L(t) and W (from Banks et al. (2010))

e Why it always holds?
L(T) = L2 nT, = 4 x area.

NTT: N
AW(T) = M0 i S W

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://www.pearson.com/us/higher-education/program/Banks-Discrete-Event-System-Simulation-5th-Edition/PGM130682.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » Little's Law

e Verify Little's Law.

L(1) L()
T3
3= — 3= ™
. W
I I <
I I I
I I I
b |
S |
. s I) ok PR B S
I I I W,
i | ! f
| |
I I vV]
| |
T, T, 1 | T, T,
I A S I
T L : T v, : :
P P | P s : :
[| I I Wi W, i Ws
" i ol o
1 ! ! ! ! L0 ! ! L1 ! ! | ! ! !
0 2 4 6 8§ 10 12 14 16 18 T=20 1 0 2 4 6 8 10 12 14 16 18 T=20 ¢

Figure: Illustration of L(t) and W (from Banks et al. (2010))

e Why it always holds?
L(T) = L2 nT, = 4 x area.

N N(T N(T N(T
M) = ME s XD Wy = 250w,

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://www.pearson.com/us/higher-education/program/Banks-Discrete-Event-System-Simulation-5th-Edition/PGM130682.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » Little's Law

e Verify Little's Law.

L(1) L()
T3
3= — 3= ™
. W
I I <
I I I
I I I
b |
S |
. s I) ok PR B S
I I I W,
i | ! f
| |
I I vV]
| |
T, T, 1 | T, T,
I A S I
T L : T v, : :
P P | P s : :
[| I I Wi W, i Ws
" i ol o
1 ! ! ! ! L0 ! ! L1 ! ! | ! ! !
0 2 4 6 8§ 10 12 14 16 18 T=20 1 0 2 4 6 8 10 12 14 16 18 T=20 ¢

Figure: Illustration of L(t) and W (from Banks et al. (2010))

e Why it always holds?
L(T) = L2 nT, = 4 x area.
N7 N(T N(T N(T
AW(T) = %ﬁ YN w, = Ly MO W, = L x area.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 31 /64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://www.pearson.com/us/higher-education/program/Banks-Discrete-Event-System-Simulation-5th-Edition/PGM130682.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » Little's Law

e Verify Little's Law.

L() L)
T3
3= — 3= ™
. W
I I <
I I I
I I I
b |
S |
. s I) ok PR B S
I I I W,
i | ! f
| |
I I ij
| |
T, T, 1 | T, T,
I A S I
T L : T v, : :
P P | P s : :
[| I I Wi W, i Ws
7, L | o A
1 ! ! ! ! L0 ! ! L1 ! ! | ! ! !
0 2 4 6 8§ 10 12 14 16 18 T=20 1 0 2 4 6 8 10 12 14 16 18 T=20 ¢

Figure: Illustration of L(t) and W (from Banks et al. (2010))

e Why it always holds?

L(T) = 730 nT, = % X area.
N(T N(T (T
AW(T) = ”EP)N(lT)Z()W TE“)Wz T X area.

So, L(T) =)\W(T) always holds.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 31 /64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://www.pearson.com/us/higher-education/program/Banks-Discrete-Event-System-Simulation-5th-Edition/PGM130682.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » Little's Law

e Verify Little's Law.

L(1) L()
T3
4B I I B I I
[W
I I <
. |
[i
S |
oL JRETE S oL —_
: : 1 e
| | LA
I I
i i
T, Ty 1 | T, T,
1 - I - - I] - [l L i I [i
ol i I I [Wy I I
. [| . LW | |
! | ! | | Wi W, Ws
| | | 1 1 [—
1T, I Ty 1 I I I I
1 ! ! ! ! L0 ! ! L1 ! ! | ! ! !
0 2 4 6 8 10 12 14 16 18 T=2 ¢ 0 2 4 6 8 10 12 14 16 18 T=20 1

Figure: Illustration of L(t) and W (from Banks et al. (2010))

e Why it always holds?
L(T) = L2 nT, = 4 x area.
AW(T) = %ﬁ YN w, = Ly MO W, = L x area.
So, L(T) = /):W(T) always holds.

e The same argument for EQ(T) = XWQ(T).

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 31 /64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://www.pearson.com/us/higher-education/program/Banks-Discrete-Event-System-Simulation-5th-Edition/PGM130682.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » Little's Law

Theorem 3 (Little's Law — Limit/Expectation Version)

For a stable queue, let * denote the arrival rate or entering
rate, then

L=XW, Lg=XWq.
Caution: When * is the arrival rate, the time average (W, Wg)
is based on all customers (who enters the station and who are lost);
When * is the entering rate, the time average is only based on
the customers who enters the station.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 32 /64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » Little's Law

Theorem 3 (Little's Law — Limit/Expectation Version)

For a stable queue, let * denote the arrival rate or entering
rate, then

L=XW, Lg=XWq.
Caution: When * is the arrival rate, the time average (W, Wg)
is based on all customers (who enters the station and who are lost);
When * is the entering rate, the time average is only based on
the customers who enters the station.

e Some Remarks:
 For a customer who is lost (due to the finite capacity), he
spends 0 amount of time in the station (or queue).
¢ Once we know anyone of L, W, Lg and Wy, we can compute
the rest using Little's Law.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 32 /64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1 Queue

o M/M/1 Queue'

e The interarrival times are iid random variables with Exp())
distribution, that is to say, customers arrive according to a
Poisson process with rate \.

e The service times are iid random variables with Exp(u)
distribution.

e The customers are served in an FCFS fashion by a single server.

e The capacity is unlimited, i.e., waiting space is unlimited.

e M/M/1 queue is stable if and only if A\ < p.

e Due to unlimited capacity, arrival rate = entering rate.

TM/M/l Queue C Birth and Death Process with Infinite Capacity C Continuous-Time Markov Chain.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 33 /64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1 Queue

o M/M/1 Queue'

e The interarrival times are iid random variables with Exp())
distribution, that is to say, customers arrive according to a
Poisson process with rate \.

e The service times are iid random variables with Exp(u)
distribution.

e The customers are served in an FCFS fashion by a single server.

e The capacity is unlimited, i.e., waiting space is unlimited.

e M/M/1 queue is stable if and only if A\ < p.

e Due to unlimited capacity, arrival rate = entering rate.

e We now want to compute all the measures P,, L, W, Lg and

TM/M/l Queue C Birth and Death Process with Infinite Capacity C Continuous-Time Markov Chain.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 33 /64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1 Queue

e Recall that L can be computed via L = Z;f:o npP,, where P,
has two interpretations:
e Long-run proportion of time that the station contains exactly

n customers;
o Probability that there are exactly n customers in the station as

time goes to infinity (or equivalently, in the steady state).

34 / 64

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1 Queue

e Recall that L can be computed via L = Z;f:o npP,, where P,
has two interpretations:

e Long-run proportion of time that the station contains exactly
n customers;

o Probability that there are exactly n customers in the station as
time goes to infinity (or equivalently, in the steady state).

e Define the state as the the number of customers in the
system.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 34 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1 Queue

e Recall that L can be computed via L = Z;f:o npP,, where P,
has two interpretations:
e Long-run proportion of time that the station contains exactly
n customers;
o Probability that there are exactly n customers in the station as
time goes to infinity (or equivalently, in the steady state).

e Define the state as the the number of customers in the
system.

e The state space diagram is as follows:

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 34 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1 Queue
A A A /L A A A

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 35 /64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1 Queue
A A A /L A A A

Key Observation 1

Rate at which the process leaves state n
= Rate at which the process enters state n.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 35 /64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1 Queue
A A A /L A A A

Key Observation 1

Rate at which the process leaves state n
= Rate at which the process enters state n.

Heuristic Proof.

e In any time interval, the number of transitions into state n must
equal to within 1 the number of transitions out of state n. (Why?)

¢ Hence, in the long run, the rate into state n must equal the rate out
of state n.

35 / 64

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1 Queue
A A A /)_‘ A A A

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 36 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1 Queue
I i T . n I i

Rate at which the process leaves state 0 = Py,

Rate at which the process leaves state n = P,,(u+A), n > 1;
Rate at which the process enters state 0 = Py u;

Rate at which the process enters state n = P,,_1 A+ P14,
n>1.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1 Queue
I i T . n I i

Rate at which the process leaves state 0 = Py,

Rate at which the process leaves state n = P,,(u+A), n > 1;
Rate at which the process enters state 0 = Py u;

Rate at which the process enters state n = P,,_1 A+ P14,
n>1.

If Xq,..., X, are independent random variables, and X; ~
Exp(Ai), i =1,...,n, then

min{Xy,..., X} ~Exp(A1 + -+ + \p).

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1 Queue

Theorem 4 (Limiting Distribution of M /M /1 Queue)

For an M/M/1 queue, when it is stable (A <), its limiting
(steady-state) distribution is given by
Po=0-p)p" nz0,

where p == A/ < 1. (p is called the server utilization.)

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1 Queue

Theorem 4 (Limiting Distribution of M /M /1 Queue)

For an M/M/1 queue, when it is stable (A <), its limiting
(steady-state) distribution is given by
Po=0-p)p" nz0,

where p == A/ < 1. (p is called the server utilization.)

Proof.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1 Queue

Theorem 4 (Limiting Distribution of M /M /1 Queue)

For an M/M/1 queue, when it is stable (A <), its limiting
(steady-state) distribution is given by
Po=0-p)p" nz0,

where p == A/ < 1. (p is called the server utilization.)

Proof. Due to Observations 1 & 2,

State Rate Process Leaves Rate Process Enters
0 P()/\ = PLu
n,n>1 P,(p+ XN = P A+ Py

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 37 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1 Queue

Theorem 4 (Limiting Distribution of M /M /1 Queue)

For an M/M/1 queue, when it is stable (A <), its limiting
(steady-state) distribution is given by
Po=0-p)p" nz0,

where p == A/ < 1. (p is called the server utilization.)

Proof. Due to Observations 1 & 2,

State Rate Process Leaves Rate Process Enters
0 P()/\ = PLu
n,n>1 P,(p+ XN = Py aA+ Poip

Rewriting these equations gives
Pox = Pip,
PA=Poiip+ (PooaA— Pop), n>1.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 37 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1 Queue

Recall that
PoA = Py,
P A=Poiip+ (PoiA— Pop), n>1.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 38 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1 Queue

Recall that
PoA = Py,
P A=Poiip+ (PoiA— Pop), n>1.

Or, equivalently,
PoA = Py,
P\ =P+ (PoA— Pip) = Py,

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1 Queue

Recall that
PoA = Py,
P A=Poiip+ (PoiA— Pop), n>1.

Or, equivalently,
PoA = Py,
P\ = Py + (PoX — Pip) = Pap,
Py\ = P3pi+ (P — Pop) = Psp,

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1 Queue

Recall that
PoA = Py,
P A=Poiip+ (PoiA— Pop), n>1.

Or, equivalently,
PoA = Py,
PiA = Pyu+ (Po\— Pip) = Pop,
Po)\ = P3pu+ (Py\ — Pop) = Pap,
P A= Poip+ (PoaXA— Pop) = Py, n>1.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 38 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1 Queue

Recall that

PoA = Py,
PoA = Posrpi+ (Paoi X — Popt), n> 1.

Or, equivalently,
PoA = Py,
PiA = Pyu+ (Po\— Pip) = Pop,
Po)\ = P3pu+ (Py\ — Pop) = Pap,

P A= Poip+ (PoaXA— Pop) = Py, n>1.

Let p:= A/u (< 1), solving in terms of Py yields
Py = Pyp,

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

38 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1 Queue

Recall that

PoA = Py,
PoA = Posrpi+ (Paoi X — Popt), n> 1.

Or, equivalently,
PoA = Py,
PiA = Pyu+ (Po\— Pip) = Pop,
Po)\ = P3pu+ (Py\ — Pop) = Pap,

P A= Poip+ (PoaXA— Pop) = Py, n>1.

Let p:= A/u (< 1), solving in terms of Py yields
Py = Pyp,
P2=P1/0=Pop2.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

38 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1 Queue

Recall that

PoA = Py,
PoA = Posrpi+ (Paoi X — Popt), n> 1.

Or, equivalently,
PoA = Py,
PiA = Pyu+ (Po\— Pip) = Pop,
Po)\ = P3pu+ (Py\ — Pop) = Pap,

P A= Poip+ (PoaXA— Pop) = Py, n>1.

Let p:= A/u (< 1), solving in terms of Py yields
Py = Pyp,
Py = Pip = Pyp”,
P, =P, 1p=Fp", n>1

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

38 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues

Recall that
PoA = Py,
P A=Poiip+ (PoiA— Pop), n>1.

Or, equivalently,
PoA = Py,
P\ = Py + (PoX — Pip) = Pap,
Py\ = P3pi+ (P — Pop) = Psp,

P A= Poip+ (PoaXA— Pop) = Py, n>1.

Let p:= A/u (< 1), solving in terms of Py yields
Py = Pyp,
Py = Pip = Pyp”,
P, =P, 1p=Fp", n>1

Since 1 = X2 (P, = PyX02 4p™ = Py /(1 — p), we have

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

» M/M/1 Queue

38 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues

Recall that
PoA = Py,
P A=Poiip+ (PoiA— Pop), n>1.

Or, equivalently,
PoA = Py,
P\ = Py + (PoX — Pip) = Pap,
Py\ = P3pi+ (P — Pop) = Psp,

P A= Poip+ (PoaXA— Pop) = Py, n>1.

Let p:= A/u (< 1), solving in terms of Py yields
Py = Pyp,
Py = Pip = Pyp”,
P, =P, 1p=Fp", n>1
Since 1 = X2 (P, = PyX02 4p™ = Py /(1 — p), we have
Py=1-p, and P,=(1-p)p", n>1.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

» M/M/1 Queue

38 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1 Queue

o L=3% 2 nP, =" n(l—p)p"= -

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 39 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1 Queue

o L=3% "2 nP,=> " n(l—p)p" ﬁ.

e Using Little's Law, W = L/\ =

>f|>—‘
w:

|
N

>

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1 Queue

o L= Conby =32 gn(l—p)p" =12,

e Using Little's Law, W = L/\ = %Tin = ﬁ

o Lo=2 i (n =P, =371 (n—1)(1—=p)p" ==

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 39 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1 Queue

o L= Y gnPy = Sogn(l -)" = 2

—p
e Using Little's Law, W = L/A = 3 & L= ﬁ

2
Lo =T (- VP = T (- (1 -)" = £
e Using Little's Law, Wy = Lo/ = %i% = ;%TLLp = ﬁ.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 39 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1 Queue
o L=3Tonby =3 "02on(1—p)p" = 12,

Using Little's Law, IV = L/A = 1 & = .

Lo=Yplin=1)P, =3 (n—=1)(1—=p)p" = ¢

Using Little's Law, W = Lg/A = %-ﬁ =

Or, Wo = W — E[service time] = 1__

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 39 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues

[Q)svsa |

L=3%>nP, =" n(l—p)p" %.

Using Little's Law, I/ = L/A = ;& 2 = ﬁ

Lo=2321n =Py =37 (n—1)(1 —p)p" =
Using Little’s Law, 1) = Lo/A = 14 = L2 =
Or, W = W — E[service time| = ;ﬁ - i = u(u)\—A)

Using Little’s Law, Lo = AWg = A-L; = £

SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

» M/M/1 Queue

39 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1 Queue

o L=3% 2 nP, =" n(l—p)p"= %.

Using Little's Law, W = L/\ = %Tin = ﬁ

Lo=3m2i(n=1)Py =302 (n— 1)(1 = p)p" = =,

Using Little's Law, W = Lo/A = 1= =

Or, W = W — E[service time] = — —

Using Little's Law, Lo = AWg = ALy = 2.

e Due to unlimited capacity, arrival rate = entering rate, so the
time average (W, W() is based on all customers.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 39 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1 Queue

o L=3% 2 nP, =" n(l—p)p"= ﬁ.

Using Little's Law, W = L/\ = %Tin = TL\

Lo=3m2i(n=1)Py =302 (n— 1)(1 = p)p" = =,

Using Little's Law, W = Lo/A = 1= =

Or, W = W — E[service time] = — —

Using Little's Law, Lo = AWg = ALy = 2.

Due to unlimited capacity, arrival rate = entering rate, so the
time average (W, W() is based on all customers.

o P(the server is idle) = Py =1 — p.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 39 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues

[Q)svsa |

L=30lonby =302 gn(l = p)p" = 2.

Using Little's Law, I/ = L/A = ;& 2 = TL\

Lo =552 (n—)Py = S22, (n— DA - p)p" = .

Using Little's Law, W = Lo/A = %-% = ;ltlfp X

Or, Wo = W — E[service time] = ﬁ _
Using Little's Law, Lo = AWg =)_/\ = £

Due to unlimited capacity, arrival rate = entering rate, so the
time average (W, W() is based on all customers.

P(the server is idle) = Py =1 — p.

Asp—1,all L, W, Lg and Wy tend to oo.

SHEN Haihui MEM6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 39 / 64

» M/M/1 Queue

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/s Queue

o M/M/s Queue'

o Customers arrive according to a Poisson process with rate \.

e The service times are iid random variables with Exp(u)
distribution.

e There are s parallel servers.

e The customers form a single queue and get served by the next
available server in an FCFS fashion.

e The capacity is unlimited, i.e., waiting space is unlimited.

e M/M/s queue is stable if and only if A\ < spu.

e Due to unlimited capacity, arrival rate = entering rate.

TM/M/l Queue C M/M/s Queue C Birth and Death Process with Infinite Capacity C CTMC.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 40 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/s Queue

o M/M/s Queue'

e Customers arrive according to a Poisson process with rate A.

e The service times are iid random variables with Exp(u)
distribution.

e There are s parallel servers.

e The customers form a single queue and get served by the next
available server in an FCFS fashion.

e The capacity is unlimited, i.e., waiting space is unlimited.

e M/M/s queue is stable if and only if A\ < spu.

e Due to unlimited capacity, arrival rate = entering rate.

e M/M/s queue is a generalized version of M /M /1 queue. Let
s =1, all results should degenerate to those of M /M/1.

TM/M/l Queue C M/M/s Queue C Birth and Death Process with Infinite Capacity C CTMC.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 40 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/s Queue

e The state space diagram is as follows:

A A A A A A A
X
H 2p 3u (s—1)pu Spt Spt St

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 41 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/s Queue

e The state space diagram is as follows:
A A A A A A A
/A
H 2p 3 (s=1p S S Spt

Theorem 5 (Limiting Distribution of M /M /s Queue)

For an M/M/s queue, when it is stable (A < su), its limiting
(steady-state) distribution is given by

S

. -1
1)\ T s ,s+1
B e S

S11—
= I stl1—p

where the server utilization p := A\/(su) < 1, and

#(ﬁ) , if0<n<s,
Pn = .
" ‘:—!p”, ifn>s-+1.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/s Queue

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/s Queue

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/s Queue

o Lg= Zzo:s(n —8)P, = fo:s(n —5)Popn = Zzio kPopsik

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/s Queue

o Lg= Zzo:s(n —8)P, = fo:s(n —5)Popn = Zzio kPopsik
= Ezozl kP()pspk

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/s Queue

o Lg= Zzo:s(n —8)P, = fo:s(n —5)Popn = Zzio kPopsik
= Ezozl kP()pspk = Zozl szpk

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/s Queue

o Lg= Zzo:s(n —8)P, = fo:s(n —5)Popn = Zzio kPopsik

= kPopsp™ = 1 kPt = uﬁ%ﬁ

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/s Queue

o Lo=202s(n—s)Py =300 (0 — s)Popn = 32520 kPopstk
=30 kPopspb = S50 kPypb = o2

(1=p)*-
e Using Little's Law, Wy = Lo/ = %(11}5)2 = s,u(lpip)2'

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/s Queue

o Lg= Zfzs(n —8)P, = fo:s(n —5)Popn = Zzio kPops
= Yt kPopsp® = Y32, kPypt = @Ii%)z-

e Using Little's Law, Wy = Lo/ = %(11}5)2 — Su(fip)2'
o W =Wg + E[service time] = S#(fijp)g + i

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/s Queue

Lo = Zfzs(n —8)P, = fo:s(n —5)Popn = Zzio kPops
= Yt kPopsp® = Y32, kPypt = @Ii%)z-

e Using Little's Law, Wy = Lo/ = %(11}5)2 — Su(fip)2'
o W =Wg + E[service time] = S#(fijp)g + i

Using Little's Law,

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues

[Q)svsa |

Lo =2ntsn—s)Pn =3

o0
n=s

» M/M/s Queue

(n = 8)Popn = 3 5o kPops+k

= Yrts kPopspt = 302 kPspb = @Ii%)z-

Using Little's Law, W = Lg/\ = %(1

W = Wq + E[service time] =

Using Little's Law,

L:)\WI)\(WQ+I%):LQ+£:(11}5)2+A_

PSp — Ps
—p)? T su(l-p)*
_ P 41
su(i—p)? T -

m

SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/s Queue

[Q)svsa |

Lo = Zfzs(n —8)P, = fo:s(n —5)Popn = ZZio kPops
= Yy kPopsp® = 330, kPyph = (16%)2-

Using Little's Law, W = Lg/A = %(11}5)2 = Su(fjp)2.

W = Wg + E[service time] = w(fijp)g + i
Using Little's Law,

L=XW=xWo+3)=Lo+y=rufpm+i

Due to unlimited capacity, arrival rate = entering rate, so the
time average (W, Wy) is based on all customers.

SHEN Haihui MEM6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 42 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/s Queue

[Q)svsa |

Lo = fo:s(n —8)P, = fo:s(n —5)Popn = ZZio kPops
= Yy kPopsp® = 330, kPyph = (16%)2-

Psp

s P,
(1-p)?

Using Little's Law, W = Lg/A = % se(l—p)%"

W = Wg + E[service time] = w(fijp)g + i
Using Little's Law,

L=XW=xWo+3)=Lo+y=rufpm+i

Due to unlimited capacity, arrival rate = entering rate, so the
time average (W, Wy) is based on all customers.

Asp—1,all L, W, Lg and Wy tend to oo.

SHEN Haihui MEM6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 42 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M /oo Queue

o By letting s — oo we get the M /M /oo queue as a limiting
case of the M/M/s queue.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 43 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M /oo Queue

o By letting s — oo we get the M /M /oo queue as a limiting
case of the M/M/s queue.

e Note: M /M /oo queue is always stable! (The server
utilization is always 0.)

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 43 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M /oo Queue

o By letting s — oo we get the M /M /oo queue as a limiting
case of the M/M/s queue.

e Note: M /M /oo queue is always stable! (The server
utilization is always 0.)

o All the measures can be obtained by letting s — oo for those
in the case of M/M/s queue.

TUse the Taylor series (ZEEIREL): ¢ = 3, Zr.

n=0 n!

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 43 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M /oo Queue

o By letting s — oo we get the M /M /oo queue as a limiting
case of the M/M/s queue.

e Note: M /M /oo queue is always stable! (The server
utilization is always 0.)

o All the measures can be obtained by letting s — oo for those
in the case of M/M/s queue.

e Or, one can still derive P, via the state space diagram'

CUOUEL - oo -

(n+2)p

TUse the Taylor series (FEEIREL): ¢ = 3, 1.

n=0 n!

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 43 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M /oo Queue

Theorem 6 (Limiting Distribution of M /M /oo Queue)

For an M/M /o queue, its limiting (steady-state) distribu-
tion is given by

P = e—)\/p, (A/u’)n

, n>0.
n!

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M /oo Queue

Theorem 6 (Limiting Distribution of M /M /oo Queue)

For an M/M /o queue, its limiting (steady-state) distribu-
tion is given by

P = e—)\/p, (A/u’)n

, n>0.
n!

e In steady state, the number of customers in an M /M /oo
station ~ Poisson(A/u).

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M /oo Queue

Theorem 6 (Limiting Distribution of M /M /oo Queue)

For an M/M /o queue, its limiting (steady-state) distribu-
tion is given by

P = e—)\/p, (A/u’)n

, n>0.
n!

e In steady state, the number of customers in an M /M /oo
station ~ Poisson(A/u).

e Hence, L =37° nP, = E [Poisson RV with mean ﬁ] =2

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 44 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M /oo Queue

Theorem 6 (Limiting Distribution of M /M /oo Queue)

For an M/M /o queue, its limiting (steady-state) distribu-
tion is given by

P = e—)\/p, (A/u’)n

, n>0.
n!

e In steady state, the number of customers in an M /M /oo
station ~ Poisson(A/u).

e Hence, L =37° nP, = E [Poisson RV with mean ﬁ] =2

e Using Little's Law, W = L/\ = l%

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 44 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M /oo Queue

Theorem 6 (Limiting Distribution of M /M /oo Queue)

For an M/M /o queue, its limiting (steady-state) distribu-
tion is given by

P = e—)\/p, (A/u’)n

n > 0.
n!

In steady state, the number of customers in an M /M /oo
station ~ Poisson(A/u).

Hence, L = Y7° nP, = E [Poisson RV with mean ﬁ] =2

Using Little's Law, W = L/A = l%

Lo =0, Wg=0.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 44 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1/K Queue

o M/M/1/K Queue'

o Customers arrive according to a Poisson process with rate A.

e The service times are iid random variables with Exp(u)
distribution.

e The customers are served in an FCFS fashion by a single server.

e The capacity is K, K > 1, i.e., the maximal number of
customers waiting in queue + customers in server < K.

* A customer who finds the station is full (K customers there)
leaves immediately (lost).

e The entering rate, denoted as A, is smaller than the arrival
rate \.

e It is always stable (due to the finite capacity).

TM/M/l/K Queue C Birth and Death Process with Finite Capacity C Continuous-Time Markov Chain.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 45 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1/K Queue

o M/M/1/K Queue'

o Customers arrive according to a Poisson process with rate A.

e The service times are iid random variables with Exp(u)
distribution.

e The customers are served in an FCFS fashion by a single server.

e The capacity is K, K > 1, i.e., the maximal number of
customers waiting in queue + customers in server < K.

* A customer who finds the station is full (K customers there)
leaves immediately (lost).

e The entering rate, denoted as A, is smaller than the arrival
rate \.

e It is always stable (due to the finite capacity).

e In steady state
e P(station is full) = Pk.
e Entering rate A\ = A\(1 — Pg).

TM/M/l/K Queue C Birth and Death Process with Finite Capacity C Continuous-Time Markov Chain.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 45 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1/K Queue

e The state space diagram is as follows:

A A A A A A A
/= T
p 7 T T p Jz JZ

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 46 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1/K Queue

e The state space diagram is as follows:

A A A A A A A
Y ~ A
1 T I T p T 7

Theorem 7 (Limiting Distribution of M/M/1/K Queue)

For an M/M/1/K queue, its limiting (steady-state) distri-
bution is given by

b Aoper ifp#1,
n — 1 .f _ 1 —_
e fp=1,

where p == A/u. (p is NOT the server utilization!)

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1/K Queue

A A A A A A A
= =
u w I H u # 2

Proof.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 47 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1/K Queue

A A A A A A A
= =
u w I I u # 2

Proof. Due to Observations 1 & 2,

State Rate Process Leaves Rate Process Enters
0 Py = Pip
n,1<n<K-1 Po(n+X) = Py A+ Pyiip
K Py = Pr_1)

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 47 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1/K Queue

A A A A A A A
= =
u w I I u # 2

Proof. Due to Observations 1 & 2,

State Rate Process Leaves Rate Process Enters
0 Py = Py
n,1<n<K-1 Po(n+X) = Py A+ Pyiip
K Py = Pr_1)
Rewriting these equations gives
PoA = Py,
P A=Poip+ (Pooad—Pop), 1<n<K-1,
Prp= Pr_1

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1/K Queue

Or, equivalently,
PoX = Py,
P\ = Pop+ (PoX — Pip) = Pap,
PoX = Py + (PL\ — Pop) = Pap,
P A=Poiip+ (Pooad— Pop) = Poyip, 1<n<K-2,
Px_ 1A = Pgp.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 48 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1/K Queue

Or, equivalently,
PoX = Py,
P\ = Pop+ (PoX — Pip) = Pap,
PoX = Py + (PL\ — Pop) = Pap,
P A=Poiip+ (Pooad— Pop) = Poyip, 1<n<K-2,
Px_ 1A = Pgp.

Let p := A/p, solving in terms of Py yields
Py = Pyp,

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 48 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1/K Queue

Or, equivalently,
PoX = Py,
P\ = Pop+ (PoX — Pip) = Pap,
PoX = Py + (PL\ — Pop) = Pap,
P A=Poiip+ (Pooad— Pop) = Poyip, 1<n<K-2,
Px_ 1A = Pgp.

Let p := A/p, solving in terms of Py yields
Py = Pyp,
Py = Pip = Pyp”,

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues

Or, equivalently,
PoX = Py,
P\ = Pop+ (PoX — Pip) = Pap,
PoX = Py + (PL\ — Pop) = Pap,

P A= Pyap+ (Pn—1>\ - Pn,u) = Poyapt

Px_ 1A = Pgp.

Let p := A/p, solving in terms of Py yields
Py = Pyp,
Py = Pip = Pyp”,
P,=PF,_1p=PFp", 1<n<K.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3

» M/M/1/K Queue

Spring 2022 (full-time)

1<n<K-2,

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues

Or, equivalently,
PoX = Py,
P\ = Pop+ (PoX — Pip) = Pap,
PoX = Py + (PL\ — Pop) = Pap,
PoX = Ppjip+ (Pooad = Pup) = Puyap,
Px_ 1A = Pgp.

Let p := A/p, solving in terms of Py yields
Py = Pyp,
Py = Pip = Pyp”,
P,=PF,_1p=PFp", 1<n<K.

PO 1— K+1
Since 1 = XK P, = P,XE o7 = 1-p

. ifp#1,
Py(K+1), ifp=1,

» M/M/1/K Queue

1<n<K-2,

we have,

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 48 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues

Or, equivalently,
PoX = Py,
P\ = Pop+ (PoX — Pip) = Pap,
PoX = Py + (PL\ — Pop) = Pap,

» M/M/1/K Queue

Pn/\:Pn+1/1+(Pn—1>_PnN):Pn+1,l1'y 1<n<K-2,
Px_ 1A = Pgp.
Let p := A/p, solving in terms of Py yields
Py = Fyp,
Py = Pip = Pyp?,
P,=P,1p=PFPyp", 1<n<K.
1-pitt if p£1,

P

if p#1, Po=1ba, and P,={800 1<n<K;

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 48 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues

Or, equivalently,
PoX = Py,
P\ = Pop+ (PoX — Pip) = Pap,
PoX = Py + (PL\ — Pop) = Pap,

» M/M/1/K Queue

Pn/\:Pn+1/1+(Pn—1>_PnN):Pn+1,l1'y 1<n<K-2,

Px_ 1A = Pgp.
Let p := A/p, solving in terms of Py yields
Py = Fyp,

Py = Pip = Pyp?,
P,=P,1p=PFPyp", 1<n<K.

P

ifp#1, Po= b, and Pn=<1:,£2¢’1, l<n<K,
pr:]., PO_K_H' and P K_H'].S?’LSK

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

48 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1/K Queue

o If p#£1,
K
L=>%_onP,

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 49 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1/K Queue

o If p#£1,
K 1—p)p™
L= Z =0 nb, = Zn:O n L,ﬁzﬁl

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 49 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1/K Queue

o If p#£1,

_ K _ K (I=p)p™ _ _1=p K n
L=3%n—gnbn= anonlfplﬂl = 1-pKF1 2Zun=0"'P

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 49 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1/K Queue

o If p#£1,
_ K _ K (I=p)p™ _ _1=p K n
L=3%n—gnbn= anonlfplﬂl = 1-pKF1 2Zun=0"'P
_ _1-p p=(K+1)pKt 4+ KpK+2
T 1-pKH (1-p)?

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 49 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1/K Q

o If p#£1,
_ K _ K A=p)p™ _ _1-p K n
L=3%_onb,= Zn:onl,pxﬂ = 1_pkT1 > n—o NP
_ _1-p p=(K+D)pNT4KpE*T2 _ p 1 (K41)pN+Kpht!
T 1-pkHl (1-p)? T 1-p 1—pk+1 :

49 / 64

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1/K Q

o If p#£1,
_ K _ K A=p)p™ _ _1-p K n
L=3%n—gnbn= Zn:onl,pxﬂ = 1 pRAT > n=o P
_ _1-p p=(K+D)pNT4KpE*T2 _ p 1 (K41)pN+Kpht!
T 1-pkHl (1-p)? T 1-p 1—pk+1 :
e lf p=1,
_ K _ K 1 _ 1 (K+1)K _ K
L=3onPn= Zn:OnK-i-l — K+l 2~ 2

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 49 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1/K Queue

o If p#£1,
_ K _ K A=p)p™ _ _1-p K n
L=3%n—gnbn= Zn:onl,pxﬂ = 1 pRAT > n=o P
_ _1-p p=(K+D)pNT4KpE*T2 _ p 1 (K41)pN+Kpht!
T 1-pKH (1-p)? T I-

P 17pK+1 .

e lf p=1,

- K o K 1 _ 1 (K+1)K _ K
L= _onb,= Zn:OnK-i-l = K11 2 =72

e [P[station is full] = Pk.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 49 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1/K Queue

o If p#£1,
_ K _ K A=p)p™ _ _1-p K n
L=3%onbn=2_ NI RFT = T_,K+1 > n—o NP
_ _1-p p=(K+D)pNT4KpE*T2 _ p 1 (K41)pN+Kpht!
=2)

T1-pkH (1-p)? p 1—pht1

e lf p=1,

_ K _ K 1 _ 1 (K+1)K _ K
L_En:OnP_Zn:OnK—i-l_K-H 2 =72

e [P[station is full] = Pk.

o Entering rate A\c = A(1 — Pxk).

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1/K Queue

If p#1,
K K 1—p)p" 1— K
L=3%onbn=2_ ”Lp%)ﬁl = 1,pr+1 > n—onP"

_ _1-p p=(K+D)pNT4KpE*T2 _ p 1 (K41)pN+Kpht!
=2 _

T1-pkH (1-p)? p 1—pht1

e lf p=1,
- K o K 1 _ 1 (K+1)K _ K
L=3onban= Zn:OnK—H =Kf1 2~ 2

[P[station is full] = Pg.

Entering rate A\c = A(1 — Pk).

The server utilization = \¢/pn = p(1 — Pk).

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1/K Queue

[Q)svsa |

If p#1,
K K 1—p)p" 1— K
L=3%onbn=2_ ”Lp%)ﬁl = 1,pr+1 > n—onP"

_ _1-p p=(K+D)pNT4KpE*T2 _ p 1 (K41)pN+Kpht!
=2 _

T 1-pkAt (1-p)? p 1—pk+1
If p=1,

- K o K 1 _ 1 (K+1)K _ K
L=3onPa=2 0 "gAa T k1 2 2

[P[station is full] = Pg.
Entering rate A\c = A(1 — Pk).
The server utilization = \¢/pn = p(1 — Pk).

ASp—)OO,L—)K,l—PK%O, p(l—PK)—>1.

SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1/K Queue

e For those entered the station
o The expected sojourn time W = L/\, = ﬁ.
1L

L - |
* The expected waiting time Wo =W — & = 15755 —

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

» M/M/1/K Queue

Single-Station Queues

e For those entered the station
» The expected sojourn time W = L/
e The expected waiting time Wy =W — % = ﬁ — ,l;

_ L
e = X(1-Px)"

e For ALL the arrivals (those who are lost have 0 sojourn time
and waiting time)

e The expected sojourn time W' = (1 — Px)W +0 =

¢ The expected waiting time /¢, = (1 — Px)Wgq +0

Spring 2022 (full-time)

MEM®6810 Modeling and Simulation, Lec 3

[@)BY-saA | SHEN Haihui

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

» M/M/1/K Queue

Single-Station Queues

e For those entered the station
» The expected sojourn time W = L/
e The expected waiting time Wy =W — % = ﬁ — ,l;

_ L
e)\(lfpj() :

e For ALL the arrivals (those who are lost have 0 sojourn time

and waiting time)
e The expected sojourn time W' = (1 — Px)W +0 = %
0= L 1-Pg
=L T

¢ The expected waiting time 1/(, = (1 — Px)Wq +

e The expected queue length Ly = AW =L — p(1 — Px),
or, = AW, =L — p(1 — Pk).

Spring 2022 (full-time) 50 / 64

MEM®6810 Modeling and Simulation, Lec 3

[@)BY-saA | SHEN Haihui

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

» M/M/1/K Queue

Single-Station Queues

e For those entered the station
* The expected sojourn time 1V = L/\, = ﬁ.
i_ L 1
— XM1-Pk) we

e The expected waiting time Wy =W — m

e For ALL the arrivals (those who are lost have 0 sojourn time

and waiting time)
e The expected sojourn time W' = (1 — Px)W +0 = %
0= L 1-Pg
=L T

* The expected waiting time /¢, = (1 — Px)Wq +

e The expected queue length Ly = AW =L — p(1 — Px),
or, = AW, =L — p(1 — Pk).

¢ Asp—00,1-Pg—=0p(1-Pg)—1L—-K Log—K-1

Spring 2022 (full-time) 50 / 64

MEM®6810 Modeling and Simulation, Lec 3

[@)BY-saA | SHEN Haihui

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

» M/M/1/K Queue

Single-Station Queues

e For those entered the station
* The expected sojourn time 1V = L/\, = ﬁ.
i_ L 1
— XM1-Pk) we

e The expected waiting time Wy =W — m
e For ALL the arrivals (those who are lost have 0 sojourn time

and waiting time)
e The expected sojourn time W' = (1 — Px)W +0

L
X.
¢ The expected waiting time 1/, = (1 — Px)Wq +0 =

1—Pg

L _
A o

0
e The expected queue length Ly = AW =L — p(1 — Px),
or, = AW, =L — p(1 — Pk).

¢ Asp—00,1-Pg—=0p(1-Pg)—1L—-K Log—K-1

e If pis fixed and A — oo:
A= Pr) =, W= 5 W — £ W — 0, Wi, — 0.

Spring 2022 (full-time) 50 / 64

MEM®6810 Modeling and Simulation, Lec 3

[@)BY-saA | SHEN Haihui

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

» M/M/1/K Queue

Single-Station Queues

e For those entered the station
* The expected sojourn time 1V = L/\, = ﬁ.
i_ L 1
— XM1-Pk) we

e The expected waiting time Wy =W — m
e For ALL the arrivals (those who are lost have 0 sojourn time

and waiting time)
e The expected sojourn time W' = (1 — Px)W +0

L
X.
¢ The expected waiting time 1/, = (1 — Px)Wq +0 =

1—Pg

L _
A o

0

e The expected queue length Ly = AW =L — p(1 — Px),
or, = AW, =L — p(1 — Pk).

¢ Asp—00,1-Pg—=0p(1-Pg)—1L—-K Log—K-1

e If pis fixed and A — oo:
A= Pr) =, W= 5 W — £ W — 0, Wi, — 0.
K-1

A

e If \is fixed and p — O:
(1-Pg)—= 5, W =00, Wg =00, W = £, W, —

50 / 64

1
w
Spring 2022 (full-time)

[@)BY-saA | SHEN Haihui

MEM®6810 Modeling and Simulation, Lec 3

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/s/K Queue

o M/M/s/K queue' is a generalized version of M/M/1/K
queue. (K > s)

e The state space diagram is as follows:

OsOsiiecs0sCele0

o Let s =1, it becomes the M/M/1/K queue.
o Let s = K, it becomes the M/M/K/K queue.

e There is no M/M/oo/K queue!

TM/M/l/K Queue C M/M/s/K Queue C Birth and Death Process with Finite Capacity C CTMC.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 51 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/s/K Queue

Theorem 8 (Limiting Distribution of M/M/s/K Queue)

For an M/M/s/K queue, its limiting (steady-state) distri-
bution is given by

S

£30)"

i=0 K

where p := \/(sp), (p is NOT the server utilization!) and

et ifp#£1,

0=
(K - 35), if p=1,

and

n

%<5> , ifo<n<s,

Pn =g A
%p", ifs+1<n<K,K>s+1.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/s/K Queue

Theorem 8 (Limiting Distribution of M/M/s/K Queue)

For an M/M/s/K queue, its limiting (steady-state) distri-
bution is given by

S

£30)"

i=0 K

where p := \/(sp), (p is NOT the server utilization!) and

et ifp#£1,

0=
(K - 35), if p=1,

and

n

%<5> , ifo<n<s,

Pn =g A
%p", ifs+1<n<K,K>s+1.

o The server utilization = \./(sp) = p(1 — Pxk).

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/G/1 Queue

o M/G/1 Queuef

e Customers arrive according to a Poisson process with rate \.

e The service times are iid random variables with arbitrary
distribution (mean: L, variance: o?).

e The customers are served in an FCFS fashion by a single server.

e The capacity is unlimited, i.e., waiting space is unlimited.

e M/G/1 queue is stable if and only if A < p.

TM/G/I queue has an embedded discrete-time Markov chain.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 53 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/G/1 Queue

o M/G/1 Queuef

e Customers arrive according to a Poisson process with rate \.

e The service times are iid random variables with arbitrary
distribution (mean: L, variance: o?).

e The customers are served in an FCFS fashion by a single server.

e The capacity is unlimited, i.e., waiting space is unlimited.

e M/G/1 queue is stable if and only if A < p.

o Let m? = (i)2 + 02, and the server utilization p :== \/u < 1.
o P(the server is idle) =1 — p.
- Wo =5
© Lo =A\Wq ="
s W=Wo+l=pmo 41
« L=2W =Lo+Mp=5"5+p.

TM/G/I queue has an embedded discrete-time Markov chain.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/G/1 Queue

o M/G/1 Queuef

e Customers arrive according to a Poisson process with rate \.

e The service times are iid random variables with arbitrary
distribution (mean: L, variance: o?).

e The customers are served in an FCFS fashion by a single server.

e The capacity is unlimited, i.e., waiting space is unlimited.

e M/G/1 queue is stable if and only if \ < p.

o Let m? = (i)2 + 02, and the server utilization p :== \/u < 1.
o P(the server is idle) =1 — p.
- Wo =5
© Lo =A\Wq ="
s W=Wo+l=pmo 41
« L=2W =Lo+Mp=5"5+p.

e For M /G /oo, the measures are the same as those in M/M /.

TM/G/I queue has an embedded discrete-time Markov chain.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 53 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

O Queueing Networks

» Jackson Networks

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 54 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Networks

e Queueing Network (multiple-station queueing system)

o Customers can move from one station to another (for different
service), before leaving the system.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 55 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Networks

e Queueing Network (multiple-station queueing system)

o Customers can move from one station to another (for different
service), before leaving the system.

Station 2

Station 1

Figure: Illustration of Queueing Networks

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Networks » Jackson Networks

o Jackson Queueing Network (first identified by [Jackson (1963)))f

@ The network has J single-station queues.

@ The jth station has s; servers and a single queue.

© There is unlimited waiting space at each station (infinite
capacity).

O Customers arrive at station j from outside according to a
Poisson process with rate A;; all arrival processes are
independent of each other.

® The service times at station j are iid random variables with
Exp(p;) distribution.

TJackson network is an J-dimensional continuous-time Markov chain.
[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 56 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://doi.org/10.1287/mnsc.1040.0268
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Networks » Jackson Networks

o Jackson Queueing Network (first identified by [Jackson (1963)))f

@ The network has J single-station queues.

® The jth station has s; servers and a single queue.

© There is unlimited waiting space at each station (infinite
capacity).

O Customers arrive at station j from outside according to a
Poisson process with rate A;; all arrival processes are
independent of each other.

® The service times at station j are iid random variables with
Exp(p;) distribution.

® Customers finishing service at station i join the queue (if any)
at station j with routing probability p;;, or leave the network
with probability p;o, independently of each other.

TJackson network is an J-dimensional continuous-time Markov chain.

[@)BY-saA | SHEN Haihui MEM6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 56 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://doi.org/10.1287/mnsc.1040.0268
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Networks » Jackson Networks

o Jackson Queueing Network (first identified by [Jackson (1963)))f

@ The network has J single-station queues.

® The jth station has s; servers and a single queue.

© There is unlimited waiting space at each station (infinite
capacity).

O Customers arrive at station j from outside according to a
Poisson process with rate A;; all arrival processes are
independent of each other.

® The service times at station j are iid random variables with
Exp(p;) distribution.

® Customers finishing service at station i join the queue (if any)
at station j with routing probability p;;, or leave the network
with probability p;o, independently of each other.

@ A customer finishing service may be routed to the same station
(i.e., re-enter).

TJackson network is an J-dimensional continuous-time Markov chain.

[@)BY-saA | SHEN Haihui MEM6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 56 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://doi.org/10.1287/mnsc.1040.0268
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Networks » Jackson Networks

e The routing probabilities p;; can be put in a matrix form as

follows: -
P11 P12 P13 - PiJ
P21 P22 P23 - P2J
P:= | P31 P32 P33 - P3J
| bJ1 PJj2 PJ3 - PJJ |

e The matrix P is called the routing matrix.

Spring 2022 (full-time) 57 / 64

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Networks » Jackson Networks

e The routing probabilities p;; can be put in a matrix form as

follows: -
P11 P12 P13 - PiJ
P21 P22 P23 - P2J
P:= | P31 P32 P33 - P3J
| PJ1 PJ2 PJ3 - PJJ |

e The matrix P is called the routing matrix.

e Since a customer leaving station i either joints some other
station, or leaves, we must have

J
Spitpo=1 1<i<J.
j=1

Spring 2022 (full-time) 57 / 64

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Networks » Jackson Networks

e Example 1: Tandem Queue

A, =10 Station 1 Station 2 Station 3
. piz =1 P23 =1
s;=2 s;=3 s3=1
=6 =4 3 =12 P =1
30

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 58 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Networks » Jackson Networks

e Example 1: Tandem Queue

A, =10 Station 1 Station 2 Station 3
. piz =1 P23 =1
s;=2 s;=3 s3=1
=6 =4 =12
H Hz H3 P =1
0 1 0
P=1]0 0 1
0 0 O
[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3

Spring 2022 (full-time) 58 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Networks » Jackson Networks

e Example 1: Tandem Queue

A =10 Station 1 Station 2 Station 3
i s =2 Pz =1 =3 P23 =1 o1
=6 up =4 uz =12 P =1
0 1 0
P=1]0 0 1
0 0 O

e Example 2: General Network

A =1
Station 2
A =8 s, =3 l—— 0.6
0.6 m=4
Station 1
s1=2 A3 =3 0.4 0.5
=6 0.2 l
Station 3
s3=1 =— 04
0.2 s =12
0.1

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 58 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Networks » Jackson Networks

e Example 1: Tandem Queue

A =10 Station 1 Station 2 . Station 3
=1 -
i o =2 P12 =3 P23 o1
=6 up =4 uz =12 P =1
0 1 0
P=1]0 0 1
0 0 O
e Example 2: General Network
A =1
Station 2
=8 =3 |5—> 06
Hy =4
0.6
Station 1 0 06 02
5 =2 =3 04 05 P=]0 0 04
m=6 02 | 0 05 0.1
Station 3
s3=1 L 04
02 12 N

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 58 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Networks » Jackson Networks

e Recall that customers arrive at station j from outside with
rate \;.

e Let b; be the rate of internal arrivals to station j.
e Then the total arrival rate to station j, denoted as a;, is given

b
Y aj =X +bj, 1<j<.J.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 59 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Networks » Jackson Networks

e Recall that customers arrive at station j from outside with
rate \;.

e Let b; be the rate of internal arrivals to station j.

e Then the total arrival rate to station j, denoted as a;, is given
by .
aj =X\ +bj, 1<5<J.
e |f the stations are all stable
e The departure rate of customers from station 7 will be the
same as the total arrival rate to station ¢, namely, a;.
e The arrival rate of internal customers from station i to station
j is AiPij -

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 59 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Networks » Jackson Networks

e Recall that customers arrive at station j from outside with
rate \;.

e Let b; be the rate of internal arrivals to station j.

e Then the total arrival rate to station j, denoted as a;, is given
by .
ajz)\j—i—b-, 1<5<J.
e If the stations are all stable
e The departure rate of customers from station 7 will be the

same as the total arrival rate to station ¢, namely, a;.
e The arrival rate of internal customers from station i to station

j is AiPij -

o Hence, b; = X7 aipi;, 1<j<J.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 59 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Networks » Jackson Networks

e Recall that customers arrive at station j from outside with
rate \;.

e Let b; be the rate of internal arrivals to station j.

e Then the total arrival rate to station j, denoted as a;, is given
by .
aj=)\j+b', 1<5<J.
e |f the stations are all stable
e The departure rate of customers from station 7 will be the
same as the total arrival rate to station ¢, namely, a;.
e The arrival rate of internal customers from station i to station

Jis a;pij.
° Hence, bj = Z;IZI AiPij, 1 < j < J.
e Substituting in the pervious equation, we get the traffic

equations: .
a; = Aj +Z;]:1aipz’j. 1< < J.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 59 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Networks » Stability

o Leta' =[aj ag -+ ay] and AT = [\ Ay -+ AJ], the traffic
equations can be written in matrix form as
a'=\"T+d"P,
or
a'(I-P)=\T,
where I is the J x J identity matrix.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Networks » Stability

o Leta' =[aj ag -+ ay] and AT = [\ Ay -+ AJ], the traffic
equations can be written in matrix form as
a'=\"T+d"P,
or
a'(I-P)=\T,
where I is the J x J identity matrix.

e Suppose the matrix I — P is invertible, the above equation
has a unique solution given by

am=AT(I-P)L,

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 60 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Networks » Stability

o Leta' =[aj ag -+ ay] and AT = [\ Ay -+ AJ], the traffic
equations can be written in matrix form as
a'=\"T+d"P,
or
a'(I-P)=\T,
where I is the J x J identity matrix.

e Suppose the matrix I — P is invertible, the above equation
has a unique solution given by

am=AT(I-P)L,

e The next theorem states the stability condition for Jackson
networks in terms of the above solution.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 60 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Networks » Stability

Theorem 9 (Stability of Jackson Networks)

A Jackson network with external arrival rate vector A and
routing matrix P is stable if:

(1) I — P is invertible; and

(2) a; < s;p; foralli =1,2,...,J, where a; is given by the
traffic equations.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Networks » Stability

Theorem 9 (Stability of Jackson Networks)

A Jackson network with external arrival rate vector A and
routing matrix P is stable if:

(1) I — P is invertible; and

(2) a; < s;p; foralli =1,2,...,J, where a; is given by the
traffic equations.

e Example 1: Tandem Queue

4 =10 Station 1 Station 2 Station 3
Piz=1 P23 =1
\ s1=2 ! s;=3 s3=1 \
w =6 =4 3 =12 Pao =1

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Networks » Stability

Theorem 9 (Stability of Jackson Networks)

A Jackson network with external arrival rate vector A and
routing matrix P is stable if:

(1) I — P is invertible; and

(2) a; < s;p; foralli =1,2,...,J, where a; is given by the
traffic equations.

e Example 1: Tandem Queue

4 =10 Station 1 Station 2 Station 3
Piz=1 P23 =1
\ s1=2 ! s;=3 s3=1 \
w =6 =4 3 =12 Pao =1

01 0 10 T
P:[o 0 1]_)\:[0 ,a'=X"(I-P)"'=[101010].
0 0 0
Stable.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Networks » Examples

e Example 2: General Network

A=1

Station 2

1, =8

l s =3 s— 0.6
Hy =4
Station 1 / 0 06 0.2
s =2 ls=3 04 05 P=|0 0 04
4 =6 0.2 | 0 05 0.1
Station 3

s3=1 I=—> 04
0.2
=12
H3 30‘1
[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3

Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Networks » Examples

e Example 2: General Network

Ay =1

l

Station 2

2 =8

l Sz = i s—— 06
M2 =
o / 0 06 02
s =2 A3=3 0.4 0.5 P == 0 0 0.4
=6 K | 0 05 0.1
Station 3
= 04

s3=1

=12 |

>
I
| —
wW = 0o

] . a’=A"(I—-P)'=[810.79.9] = Stable.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Networks » Examples

e Example 2: General Network

|
Station 2
M l: 8 =3 |l 06
, =4
Station 1 / - 0 0.6 0.2
s =2 A3=3 04 05 P=|0 0 04/}
4 =6 0.2 | 0 05 0.1
Station 3
0.2 :33:112 3041 o
- 8 1
A=|1], a"=X"(I~-P)'=[810.79.9] = Stable.
L 3]
If A9 is increased to 4,
- g
A=|4]|, a"=X(I—-P)'=[814.611.6] = Unstable.
L 3]

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Networks » Limiting Behavior

e Let L;(t) be the number of customers in the jth station in a
Jackson network at time t.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 63 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Networks » Limiting Behavior

e Let L;(t) be the number of customers in the jth station in a
Jackson network at time t.

e Then the state of the network at time t is given by
[L1(2), La(t), -, L (8)].

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 63 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Networks » Limiting Behavior

e Let L;(t) be the number of customers in the jth station in a
Jackson network at time t.

e Then the state of the network at time t is given by
[L1(2), La(t), -, L (8)].

e When the Jackson network is stable, the limiting distribution
of the sate of the network is

P(ny,ng,...,ny)
= tliglo]P{Ll(t) == nl,Lg(t) =nNn9,..., LJ(t) == nJ}.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 63 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Networks » Limiting Behavior

Let L;(t) be the number of customers in the jth station in a
Jackson network at time t.

Then the state of the network at time ¢ is given by
[L1(2), La(t), -, L (8)].

When the Jackson network is stable, the limiting distribution
of the sate of the network is

P(ny,ng,...,ny)
= tliglo]P{Ll(t) == nl,Lg(t) =nNn9,..., LJ(t) == nJ}.

It is a joint probability.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 63 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Networks » Limiting Behavior

Theorem 10 (Limiting Distribution of Jackson Network)

For a stable Jackson network, its limiting (steady-state) dis-
tribution is given by

P(nl,ng,...,nJ) :P1(n1)P2(n2)~-PJ(nJ),
forn; =0,1,2,...and j =1,2,...,J, where P;(n) is the

limiting probability that there are n customers in an M/M/s;
queue with arrival rate a; and service rate y;.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Networks » Limiting Behavior

Theorem 10 (Limiting Distribution of Jackson Network)

For a stable Jackson network, its limiting (steady-state) dis-
tribution is given by

P(nl,ng,...,nJ) :P1(n1)P2(n2)~-PJ(nJ),
forn; =0,1,2,...and j =1,2,...,J, where P;(n) is the

limiting probability that there are n customers in an M/M/s;
queue with arrival rate a; and service rate y;.

e The limiting joint distribution of [Ly(¢),..., L;(t)] is a product of
the limiting marginal distribution of L;(t), j=1,...,J.
= Limiting behavior of all stations are independent of each other.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 64 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Networks » Limiting Behavior

Theorem 10 (Limiting Distribution of Jackson Network)

For a stable Jackson network, its limiting (steady-state) dis-
tribution is given by

P(nl,ng,...,nJ) :P1(n1)P2(n2)~-PJ(nJ),
forn; =0,1,2,...and j =1,2,...,J, where P;(n) is the

limiting probability that there are n customers in an M/M/s;
queue with arrival rate a; and service rate y;.

\. J

e The limiting joint distribution of [Ly(¢),..., L;(t)] is a product of
the limiting marginal distribution of L;(t), j=1,...,J.
= Limiting behavior of all stations are independent of each other.

e The limiting distribution of station j is the same as that in an
isolated M /M /s; queue with arrival rate a; and service rate ;.
(a;'s are solved from the traffic equations.)

[@)BY-saA | SHEN Haihui MEM6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 64 / 64

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

	Cover
	Contents
	Queueing Systems and Models
	Introduction
	Characteristics & Terminology
	Kendall Notation

	Poisson Process
	Definition
	Properties

	Single-Station Queues
	Notations
	General Results
	Little's Law
	M/M/1 Queue
	M/M/s Queue
	M/M/∞ Queue
	M/M/1/K Queue
	M/M/s/K Queue
	M/G/1 Queue

	Queueing Networks
	Jackson Networks

