MEM6810 Engineering Systems Modeling and Simulation 工程系统建模与仿真

Theory

Lecture 3: Queueing Models

SHEN Haihui 沈海辉

Sino-US Global Logistics Institute Shanghai Jiao Tong University

shenhaihui.github.io/teaching/mem6810f shenhaihui@sjtu.edu.cn

Spring 2022 (full-time)

Contents

1 Queueing Systems and Models

- Introduction
- Characteristics & Terminology
- Kendall Notation
- 2 Poisson Process
 - Definition
 - Properties
- Single-Station Queues
 - Notations
 - General Results
 - Little's Law
 - ▶ M/M/1 Queue
 - ▶ M/M/s Queue
 - ▶ $M/M/\infty$ Queue
 - ▶ M/M/1/K Queue
 - ▶ M/M/s/K Queue
 - ▶ M/G/1 Queue
- Queueing Networks
 - Jackson Networks

- Introduction
- Characteristics & Terminology
- Kendall Notation

Poisson Process

- ▶ Definition
- Properties

3 Single-Station Queues

- Notations
- General Results
- ▶ Little's Law
- ▶ M/M/1 Queue
- $\blacktriangleright M/M/s$ Queue
- ▶ $M/M/\infty$ Queue
- $\blacktriangleright M/M/1/K$ Queue
- $\blacktriangleright M/M/s/K$ Queue
- $\blacktriangleright M/G/1$ Queue

4 Queueing Networks

Jackson Networks

CC BY-SA

• Queues (or waiting lines) are EVERYWHERE!

- Queues (or waiting lines) are EVERYWHERE!
- Queues are an unavoidable component of modern life.
 - E.g., in hospital, stores, bank, call center (online service), etc.

Introduction

Figure: Queues in Hospital

CC BY-SA

Figure: Queues in Store (from The Sun)

CC BY-SA

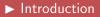


Figure: Queues in Campus (for COVID-19 Nucleic Acid Test)

Figure: Queues in Bank



Figure: Queues in Bank (No requirement to *stand physically* in queues)

Figure: Queue in Online Service

CC BY-SA

- Queues (or waiting lines) are EVERYWHERE!
- Queues are an unavoidable component of modern life.
 - E.g., in hospital, stores, bank, call center (online service), etc.

- Queues (or waiting lines) are EVERYWHERE!
- Queues are an unavoidable component of modern life.
 - E.g., in hospital, stores, bank, call center (online service), etc.
 - Although we don't like standing in a queue, we appreciate the fairness that it imposes.

- Queues (or waiting lines) are EVERYWHERE!
- Queues are an unavoidable component of modern life.
 - E.g., in hospital, stores, bank, call center (online service), etc.
 - Although we don't like standing in a queue, we appreciate the fairness that it imposes.
- Queues are not just for humans, however.
 - E.g., email system, printer, manufacturing line, etc.

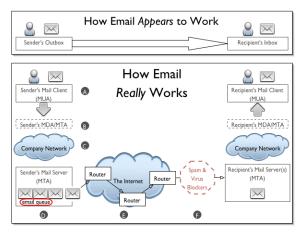


Figure: Queue in Mail Server (from OASIS)

að	HP OfficeJet Pro 8740 🛛 🗕 🗖 🗙				
Printer Document View					
Document Name	Status	Owner	Pages	Size	Submitted
🖬 Microsoft Word - Document1		dwinels	1	106 KB	10:48:22 AM 8/12/2
🖬 Microsoft Word - 403.067	Printing	dwinels	1	277 KB/277 KB	10:47:00 AM 8/12/2
<					>
document(s) in queue					

Figure: Queue in Printer

Figure: Queues (Inventories) in Manufacturing Line (from Estes)

- Queues (or waiting lines) are EVERYWHERE!
- Queues are an unavoidable component of modern life.
 - E.g., in hospital, stores, bank, call center (online service), etc.
 - Although we don't like standing in a queue, we appreciate the fairness that it imposes.
- Queues are not just for humans, however.
 - E.g., email system, printer, manufacturing line, etc.

- Queues (or waiting lines) are EVERYWHERE!
- Queues are an unavoidable component of modern life.
 - E.g., in hospital, stores, bank, call center (online service), etc.
 - Although we don't like standing in a queue, we appreciate the fairness that it imposes.
- Queues are not just for humans, however.
 - E.g., email system, printer, manufacturing line, etc.
 - Manufacturing systems maintain queues (called inventories) of raw materials, partly finished goods, and finished goods via the manufacturing process.

- Typically, a queueing system consists of a stream of "customers" (humans, goods, messages) that
 - arrive at a service facility;
 - wait in the queue according to certain discipline;
 - get served;
 - finally depart.

Introduction

- Typically, a queueing system consists of a stream of "customers" (humans, goods, messages) that
 - arrive at a service facility;
 - wait in the queue according to certain discipline;
 - get served;
 - finally depart.
- A lot of real-world systems can be viewed as queueing systems, e.g.,
 - service facilities
 - production systems
 - repair and maintenance facilities
 - communications and computer systems
 - transport and material-handling systems, etc.

Introduction

- Typically, a queueing system consists of a stream of "customers" (humans, goods, messages) that
 - arrive at a service facility;
 - wait in the queue according to certain discipline;
 - get served;
 - finally depart.
- A lot of real-world systems can be viewed as queueing systems, e.g.,
 - service facilities
 - production systems
 - repair and maintenance facilities
 - communications and computer systems
 - transport and material-handling systems, etc.
- Queueing models are mathematical representation of queueing systems.

Introduction

Introduction

- Queueing models may be
 - *analytically solved using queueing theory* when they are simple (highly simplified); or
 - analyzed through simulation when they are complex (more realistic).

Introduction

- Queueing models may be
 - *analytically solved using queueing theory* when they are simple (highly simplified); or
 - analyzed through simulation when they are complex (more realistic).
- Studied in either way, queueing models provide us a powerful tool for designing and evaluating the performance of queueing systems.

Introduction

- Queueing models may be
 - *analytically solved using queueing theory* when they are simple (highly simplified); or
 - analyzed through simulation when they are complex (more realistic).
- Studied in either way, queueing models provide us a powerful tool for designing and evaluating the performance of queueing systems.
- They help us do this by answering the following questions (and many others):
 - How many customers are there in the queue (or station) on average?
 - How long does a typical customer spend in the queue (or station) on average?
 - **6** How busy are the servers on average?

- Simple queueing models solved analytically:
 - Get rough estimates of system performance with negligible time and expense.
 - More importantly, understand the dynamic behavior of the queueing systems and the relationships between various performance measures.
 - Provide a way to verify that the simulation model has been programmed correctly.

- Simple queueing models solved analytically.
 - Get rough estimates of system performance with negligible time and expense.
 - More importantly, understand the dynamic behavior of the queueing systems and the relationships between various performance measures.
 - Provide a way to verify that the simulation model has been programmed correctly.
- Complex queueing models analyzed through simulation:
 - Allow us to incorporate arbitrarily fine details of the system into the model.
 - Estimate virtually any performance measure of interest with high accuracy.

- Simple queueing models solved analytically:
 - Get rough estimates of system performance with negligible time and expense.
 - More importantly, understand the dynamic behavior of the queueing systems and the relationships between various performance measures.
 - Provide a way to verify that the simulation model has been programmed correctly.
- Complex queueing models analyzed through simulation:
 - Allow us to incorporate arbitrarily fine details of the system into the model.
 - Estimate virtually any performance measure of interest with high accuracy.
- This lecture focuses on the classical analytically solvable queueing models.

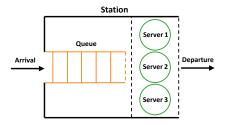
- The key elements of a queueing system are the **customers** and **servers**.
 - The term customer can refer to anything that arrives and requires service.
 - The term server can refer to any resource that provides the requested service.

- The key elements of a queueing system are the **customers** and **servers**.
 - The term customer can refer to anything that arrives and requires service.
 - The term server can refer to any resource that provides the requested service.
- The term **station** means the entire or part of the system, which contains all the identical servers and the queue.

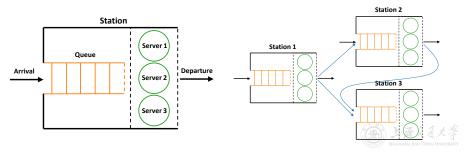
- The key elements of a queueing system are the **customers** and **servers**.
 - The term customer can refer to anything that arrives and requires service.
 - The term server can refer to any resource that provides the requested service.
- The term **station** means the entire or part of the system, which contains all the identical servers and the queue.
- Suppose that there is only **one queue** in one station.

- The key elements of a queueing system are the **customers** and **servers**.
 - The term customer can refer to anything that arrives and requires service.
 - The term server can refer to any resource that provides the requested service.
- The term **station** means the entire or part of the system, which contains all the identical servers and the queue.
- Suppose that there is only **one queue** in one station.
- **Capacity** is the maximal number of customers allowed in the station.
 - Number waiting in queue + number having service.
 - Finite or infinite.

- Single-station queueing system.
 - Customers simply leave after service.
 - E.g., customers arrive to buy coffee and then leave.



- Single-station queueing system.
 - Customers simply leave after service.
 - E.g., customers arrive to buy coffee and then leave.
- Multiple-station queueing system (queueing network).
 - Customers can move from one station to another (for different service), before leaving the system.
 - E.g., patients wait and get service at several different units inside a hospital.



- The arrival process describes how the customers come.
 - Arrivals may occur at *scheduled* times or *random* times.
 - When at random times, the **interarrival times** are usually characterized by a probability distribution.
 - Customers may arrive one at a time or in batch (with constant or random batch size).
 - Different types of customers.

- The arrival process describes how the customers come.
 - Arrivals may occur at *scheduled* times or *random* times.
 - When at random times, the **interarrival times** are usually characterized by a probability distribution.
 - Customers may arrive one at a time or in batch (with constant or random batch size).
 - Different types of customers.
- An customer arriving at a station:
 - if the station capacity is full:
 - the external arrival will leave immediately (called lost);
 - the internal arrival may wait in the previous station (may **block** the previous server).
 - if the station capacity is not full, enter the station:
 - if there is idle server in the station, get service immediately;
 - if all servers are busy, wait in the queue.

- Queue discipline: Which customer to serve first.
 - First-in-first-out (FIFO), or first-come-first-served (FCFS).
 - Last-in-first-out (LIFO), or last-come-first-served (LCFS).
 - Shortest processing time first.
 - Service according to priority (more than one customer types).

- Queue discipline: Which customer to serve first.
 - First-in-first-out (FIFO), or first-come-first-served (FCFS).
 - Last-in-first-out (LIFO), or last-come-first-served (LCFS).
 - Shortest processing time first.
 - Service according to priority (more than one customer types).
- Queue behavior: Actions of customers while waiting.
 - Balk: leave when they see that the line is too long.
 - Renege: leave after being in the line when they see that the line is moving too slowly.

- Queue discipline: Which customer to serve first.
 - First-in-first-out (FIFO), or first-come-first-served (FCFS).
 - Last-in-first-out (LIFO), or last-come-first-served (LCFS).
 - Shortest processing time first.
 - Service according to priority (more than one customer types).
- Queue behavior: Actions of customers while waiting.
 - Balk: leave when they see that the line is too long.
 - Renege: leave after being in the line when they see that the line is moving too slowly.
- Service time is the duration of service in a server.
 - Constant or random duration.
 - May depend on the customer type.
 - May depend on the time of day or the queue length.

- When without specification, the queueing models considered in this lecture shall satisfy the following:
 - One customer type.
 - 2 Random arrivals (i.e., random interarrival times, iid.).
 - 8 No batch (or say, batch size is 1).[†]
 - One queue in one station.
 - **5** First-come-first-served (FCFS).
 - 6 No balk, no renege.
 - Random service time (depends on nothing else), iid.

 $^{\dagger}1+2+3 \Rightarrow$ The arrival process is a *renewal process*.

- When without specification, the queueing models considered in this lecture shall satisfy the following:
 - **1** One customer type.
 - 2 Random arrivals (i.e., random interarrival times, iid.).
 - 8 No batch (or say, batch size is 1).[†]
 - One queue in one station.
 - **5** First-come-first-served (FCFS).
 - **6** No balk, no renege.
 - Random service time (depends on nothing else), iid.
- Even so, it is not that easy to analyze the queueing models!

 $^{\dagger}1+2+3 \Rightarrow$ The arrival process is a *renewal process*.

• Canonical notational system proposed by Kendall (1953): X/Y/s/K.

- Canonical notational system proposed by Kendall (1953): X/Y/s/K.
 - X represents the interarrival-time distribution.
 - M: Memoryless, i.e., exponential interarrival times;
 - G: General;
 - D: Deterministic.

- Canonical notational system proposed by Kendall (1953): X/Y/s/K.
 - X represents the interarrival-time distribution.
 - M: Memoryless, i.e., exponential interarrival times;
 - G: General;
 - D: Deterministic.
 - Y represents the service-time distribution.
 - Same letters as the interarrival times.

- Canonical notational system proposed by Kendall (1953): X/Y/s/K.
 - X represents the interarrival-time distribution.
 - M: Memoryless, i.e., exponential interarrival times;
 - G: General;
 - D: Deterministic.
 - Y represents the service-time distribution.
 - Same letters as the interarrival times.
 - *s* represents the number of parallel servers.
 - Finite value.
 - For infinite number of servers, s is replaced by ∞ .

- Canonical notational system proposed by Kendall (1953): X/Y/s/K.
 - X represents the interarrival-time distribution.
 - M: Memoryless, i.e., exponential interarrival times;
 - G: General;
 - D: Deterministic.
 - Y represents the service-time distribution.
 - Same letters as the interarrival times.
 - *s* represents the number of parallel servers.
 - Finite value.
 - For infinite number of servers, s is replaced by ∞ .
 - K represents the station capacity.
 - Finite value.
 - For infinite capacity, K is replaced by $\infty,$ or simply omitted.

- Canonical notational system proposed by Kendall (1953): X/Y/s/K.
 - X represents the interarrival-time distribution.
 - M: Memoryless, i.e., exponential interarrival times;
 - G: General;
 - D: Deterministic.
 - Y represents the service-time distribution.
 - Same letters as the interarrival times.
 - s represents the number of parallel servers.
 - Finite value.
 - For infinite number of servers, s is replaced by ∞ .
 - K represents the station capacity.
 - Finite value.
 - For infinite capacity, K is replaced by $\infty,$ or simply omitted.
- Examples: M/M/1, M/G/1, M/M/s/K.

Queueing Systems and Models
 Introduction
 Characteristics & Terminology
 Kendall Notation

Poisson Process

- Definition
- Properties

3 Single-Station Queues

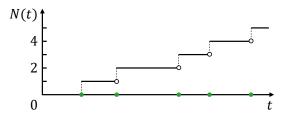
- Notations
- General Results
- ▶ Little's Law
- ▶ M/M/1 Queue
- $\blacktriangleright M/M/s$ Queue
- ▶ $M/M/\infty$ Queue
- $\blacktriangleright M/M/1/K$ Queue
- ▶ M/M/s/K Queue
- $\blacktriangleright M/G/1$ Queue

4 Queueing Networks

Jackson Networks

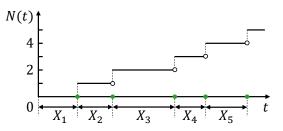
- ► Definition
- A stochastic process {N(t), t ≥ 0} is said to be a counting process if N(t) represents the total number of arrivals that have occurred up to time t.

A stochastic process {N(t), t ≥ 0} is said to be a counting process if N(t) represents the total number of arrivals that have occurred up to time t.



Definition

A stochastic process {N(t), t ≥ 0} is said to be a counting process if N(t) represents the total number of arrivals that have occurred up to time t.



- Let $\{X_n, n \ge 1\}$ denote the *interarrival times*:
 - X₁ denotes the time of the first arrival;
 - For $n \ge 2$, X_n denotes the time between the (n-1)st and the nth arrivals.

Definition

- Definition 1. The counting process {N(t), t ≥ 0} is called a Poisson process with rate λ, λ > 0, if:
 - N(0) = 0;
 - The process has independent and stationary increments;
 - For t > 0, $N(t) \sim \text{Pois}(\lambda t)$, i.e.,

$$\mathbb{P}(N(t) = n) = e^{-\lambda t} \frac{(\lambda t)^n}{n!}, \ n = 0, 1, 2, \dots$$

Definition

Poisson process \subset renewal process \subset counting process.

- Definition 1. The counting process {N(t), t ≥ 0} is called a Poisson process with rate λ, λ > 0, if:
 - N(0) = 0;
 - The process has independent and stationary increments;
 - For t > 0, $N(t) \sim \text{Pois}(\lambda t)$, i.e.,

$$\mathbb{P}(N(t) = n) = e^{-\lambda t} \frac{(\lambda t)^n}{n!}, \ n = 0, 1, 2, \dots$$

• Independent Increments: The numbers of arrivals in disjoint time intervals are independent.

Definition

Poisson process \subset renewal process \subset counting process.

- Definition 1. The counting process {N(t), t ≥ 0} is called a Poisson process with rate λ, λ > 0, if:
 - N(0) = 0;
 - The process has independent and stationary increments;
 - For t > 0, $N(t) \sim \text{Pois}(\lambda t)$, i.e.,

$$\mathbb{P}(N(t) = n) = e^{-\lambda t} \frac{(\lambda t)^n}{n!}, \ n = 0, 1, 2, \dots$$

- Independent Increments: The numbers of arrivals in disjoint time intervals are independent.
- Stationary Increments: The distribution of number of arrivals in any time interval depends only on the length of time interval, i.e., for s < t, the distribution of N(t) N(s) depends only on t s.

Definition

- Definition 2. The counting process {N(t), t ≥ 0} is called a Poisson process with rate λ, λ > 0, if:
 - N(0) = 0;
 - The process has independent and stationary increments;

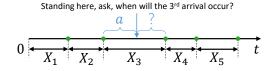
•
$$\mathbb{P}(N(t) = 1) = \lambda t + o(t);$$

•
$$\mathbb{P}(N(t) \ge 2) = o(t).$$

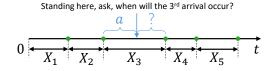
- Definition 2. The counting process $\{N(t), t \ge 0\}$ is called a Poisson process with rate $\lambda, \lambda > 0$, if:
 - N(0) = 0;
 - The process has independent and stationary increments;
 - $\mathbb{P}(N(t) = 1) = \lambda t + o(t);$
 - $\mathbb{P}(N(t) \ge 2) = o(t).$
- Definition 3. The counting process $\{N(t), t \ge 0\}$ is called a Poisson process with rate $\lambda, \lambda > 0$, if:
 - N(0) = 0;
 - $\{X_n, n \ge 1\}$ is a sequence of iid random variables, and $X_n \sim \operatorname{Exp}(\lambda)$.

- Definition 2. The counting process $\{N(t), t \ge 0\}$ is called a Poisson process with rate $\lambda, \lambda > 0$, if:
 - N(0) = 0;
 - The process has independent and stationary increments;
 - $\mathbb{P}(N(t) = 1) = \lambda t + o(t);$
 - $\mathbb{P}(N(t) \ge 2) = o(t).$
- Definition 3. The counting process $\{N(t), t \ge 0\}$ is called a Poisson process with rate $\lambda, \lambda > 0$, if:
 - N(0) = 0;
 - $\{X_n, n \ge 1\}$ is a sequence of iid random variables, and $X_n \sim \operatorname{Exp}(\lambda)$.
- **Definition 1**, **Definition 2** and **Definition 3** are equivalent.

• **Question 1**: When will the next appear?

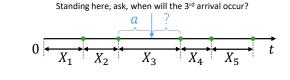


• **Question 1**: When will the next appear?



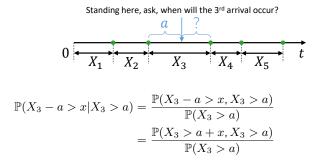
$$\mathbb{P}(X_3 - a > x | X_3 > a)$$

• **Question 1**: When will the next appear?



$$\mathbb{P}(X_3 - a > x | X_3 > a) = \frac{\mathbb{P}(X_3 - a > x, X_3 > a)}{\mathbb{P}(X_3 > a)}$$

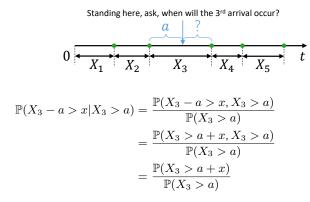
• **Question 1**: When will the next appear?



Properties

(cc) BY-SA

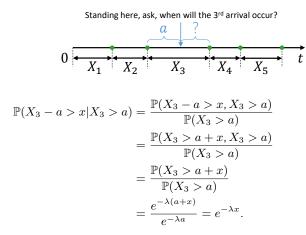
• **Question 1**: When will the next appear?



Properties

(cc) BY-SA

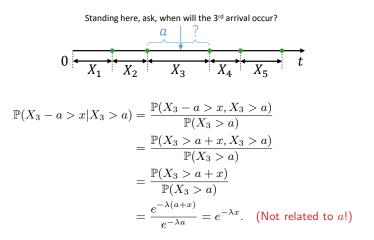
• **Question 1**: When will the next appear?



Properties

CC BY-SA

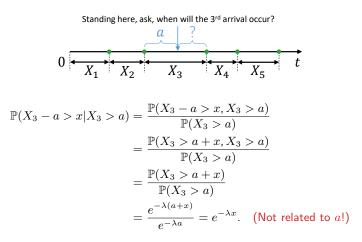
• **Question 1**: When will the next appear?



Properties

CC BY-SA

Question 1: When will the next appear? •



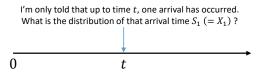
 The Poisson process has no memory! (equivalent to the independent and stationary increments assumption) (((e)) j

- Let $S_n = X_1 + X_2 + \dots + X_n$ be the arrival time of the *n*th arrival.
- Question 2: If I only know there are n arrivals up to time t, what can I say about the n arrival times S_1, \ldots, S_n ?

- Let $S_n = X_1 + X_2 + \dots + X_n$ be the arrival time of the *n*th arrival.
- Question 2: If I only know there are n arrivals up to time t, what can I say about the n arrival times S_1, \ldots, S_n ?
- A simplified case:

I'm only told that up to time *t*, one arrival has occurred. What is the distribution of that arrival time $S_1 (= X_1)$? 0 *t*

- Let $S_n = X_1 + X_2 + \dots + X_n$ be the arrival time of the *n*th arrival.
- Question 2: If I only know there are n arrivals up to time t, what can I say about the n arrival times S_1, \ldots, S_n ?
- A simplified case:



- Intuition:
 - Since Poisson process possesses independent and stationary increments, each interval of equal length in [0, t] should have the same probability of containing the arrival.
 - Hence, the arrival time should be uniformly distributed on [0, t].

Proof.

 $\mathbb{P}\{X_1 < s | N(t) = 1\}$

Proof.

$$\mathbb{P}\{X_1 < s | N(t) = 1\} = \frac{\mathbb{P}\{X_1 < s, N(t) = 1\}}{\mathbb{P}\{N(t) = 1\}}$$

Proof.

$$\begin{split} \mathbb{P}\{X_1 < s | N(t) = 1\} &= \frac{\mathbb{P}\{X_1 < s, N(t) = 1\}}{\mathbb{P}\{N(t) = 1\}} \\ &= \frac{\mathbb{P}\{1 \text{ arrival in } [0, s), 0 \text{ arrival in } [s, t)\}}{\mathbb{P}\{N(t) = 1\}} \end{split}$$

Proof.

$$\begin{split} \mathbb{P}\{X_1 < s | N(t) = 1\} &= \frac{\mathbb{P}\{X_1 < s, N(t) = 1\}}{\mathbb{P}\{N(t) = 1\}} \\ &= \frac{\mathbb{P}\{1 \text{ arrival in } [0, s), 0 \text{ arrival in } [s, t)\}}{\mathbb{P}\{N(t) = 1\}} \\ &= \frac{\mathbb{P}\{1 \text{ arrival in } [0, s)\} \mathbb{P}\{0 \text{ arrival in } [s, t)\}}{\mathbb{P}\{N(t) = 1\}} \quad \text{(independent)} \end{split}$$

Proof.

$$\begin{split} \mathbb{P}\{X_1 < s | N(t) = 1\} &= \frac{\mathbb{P}\{X_1 < s, N(t) = 1\}}{\mathbb{P}\{N(t) = 1\}} \\ &= \frac{\mathbb{P}\{1 \text{ arrival in } [0, s), 0 \text{ arrival in } [s, t)\}}{\mathbb{P}\{N(t) = 1\}} \\ &= \frac{\mathbb{P}\{1 \text{ arrival in } [0, s)\} \mathbb{P}\{0 \text{ arrival in } [s, t)\}}{\mathbb{P}\{N(t) = 1\}} \quad \text{(independent)} \\ &= \frac{\mathbb{P}\{N(s) = 1\} \mathbb{P}\{N(t - s) = 0\}}{\mathbb{P}\{N(t) = 1\}} \quad \text{(stationary)} \end{split}$$

Proof.

$$\begin{split} \mathbb{P}\{X_1 < s | N(t) = 1\} &= \frac{\mathbb{P}\{X_1 < s, N(t) = 1\}}{\mathbb{P}\{N(t) = 1\}} \\ &= \frac{\mathbb{P}\{1 \text{ arrival in } [0, s), 0 \text{ arrival in } [s, t)\}}{\mathbb{P}\{N(t) = 1\}} \\ &= \frac{\mathbb{P}\{1 \text{ arrival in } [0, s)\} \mathbb{P}\{0 \text{ arrival in } [s, t)\}}{\mathbb{P}\{N(t) = 1\}} \quad \text{(independent)} \\ &= \frac{\mathbb{P}\{N(s) = 1\} \mathbb{P}\{N(t - s) = 0\}}{\mathbb{P}\{N(t) = 1\}} \quad \text{(stationary)} \\ &= \frac{e^{-\lambda s} \lambda s e^{-\lambda(t-s)}}{e^{-\lambda t} \lambda t} \end{split}$$

Proof.

$$\begin{split} \mathbb{P}\{X_1 < s | N(t) = 1\} &= \frac{\mathbb{P}\{X_1 < s, N(t) = 1\}}{\mathbb{P}\{N(t) = 1\}} \\ &= \frac{\mathbb{P}\{1 \text{ arrival in } [0, s), 0 \text{ arrival in } [s, t)\}}{\mathbb{P}\{N(t) = 1\}} \\ &= \frac{\mathbb{P}\{1 \text{ arrival in } [0, s)\} \mathbb{P}\{0 \text{ arrival in } [s, t)\}}{\mathbb{P}\{N(t) = 1\}} \quad \text{(independent)} \\ &= \frac{\mathbb{P}\{N(s) = 1\} \mathbb{P}\{N(t - s) = 0\}}{\mathbb{P}\{N(t) = 1\}} \quad \text{(stationary)} \\ &= \frac{e^{-\lambda s} \lambda s e^{-\lambda(t - s)}}{e^{-\lambda t} \lambda t} \\ &= \frac{s}{t}. \end{split}$$

Proof.

$$\begin{split} \mathbb{P}\{X_1 < s | N(t) = 1\} &= \frac{\mathbb{P}\{X_1 < s, N(t) = 1\}}{\mathbb{P}\{N(t) = 1\}} \\ &= \frac{\mathbb{P}\{1 \text{ arrival in } [0, s), 0 \text{ arrival in } [s, t)\}}{\mathbb{P}\{N(t) = 1\}} \\ &= \frac{\mathbb{P}\{1 \text{ arrival in } [0, s)\} \mathbb{P}\{0 \text{ arrival in } [s, t)\}}{\mathbb{P}\{N(t) = 1\}} \quad \text{(independent)} \\ &= \frac{\mathbb{P}\{N(s) = 1\} \mathbb{P}\{N(t - s) = 0\}}{\mathbb{P}\{N(t) = 1\}} \quad \text{(stationary)} \\ &= \frac{e^{-\lambda s} \lambda s e^{-\lambda(t - s)}}{e^{-\lambda t} \lambda t} \\ &= \frac{s}{t}. \end{split}$$

• Remark: This result can be generalized to n arrivals.

Property (Conditional Distribution of Arrival Times)

Given that N(t) = n, the *n* arrival times S_1, \ldots, S_n have the same distribution as the order statistics corresponding to *n* independent RVs uniformly distributed on the interval (0, t).

Property (Conditional Distribution of Arrival Times)

Given that N(t) = n, the *n* arrival times S_1, \ldots, S_n have the same distribution as the order statistics corresponding to *n* independent RVs uniformly distributed on the interval (0, t).

Illustration:

Given N(t) = n, how can I generate a sample of $\{S_1, S_2, ..., S_n\}$?

Property (Conditional Distribution of Arrival Times)

Given that N(t) = n, the *n* arrival times S_1, \ldots, S_n have the same distribution as the order statistics corresponding to *n* independent RVs uniformly distributed on the interval (0, t).

Illustration:

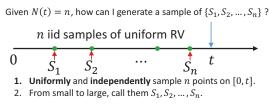


1. Uniformly and independently sample n points on [0, t].

Property (Conditional Distribution of Arrival Times)

Given that N(t) = n, the *n* arrival times S_1, \ldots, S_n have the same distribution as the order statistics corresponding to *n* independent RVs uniformly distributed on the interval (0, t).

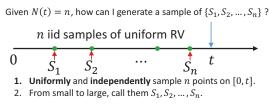
Illustration:



Property (Conditional Distribution of Arrival Times)

Given that N(t) = n, the *n* arrival times S_1, \ldots, S_n have the same distribution as the order statistics corresponding to *n* independent RVs uniformly distributed on the interval (0, t).

Illustration:



This is very nice for simulation!

Queueing Systems and Models

- ► Introduction
- Characteristics & Terminology
- Kendall Notation

2 Poisson Process

- ► Definition
- Properties

Single-Station Queues

- Notations
- General Results
- Little's Law
- ▶ M/M/1 Queue
- ▶ M/M/s Queue
- ▶ $M/M/\infty$ Queue
- ▶ M/M/1/K Queue
- ▶ M/M/s/K Queue
- ▶ M/G/1 Queue
- 4 Queueing Networks
 - Jackson Networks

• Let L(t) denote the number of customers in the station at time t.

• Let L(t) denote the number of customers in the station at time t.

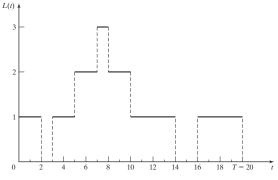
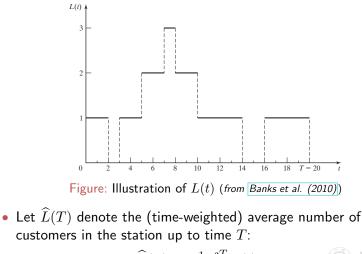


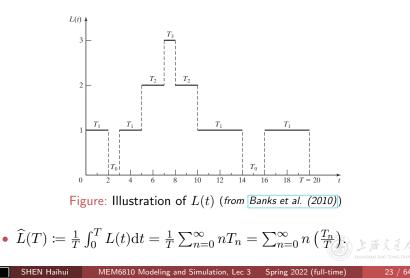
Figure: Illustration of L(t) (from Banks et al. (2010))

• Let L(t) denote the number of customers in the station at time t.



(cc) BY-SA

• Another expression of $\widehat{L}(T)$: Let T_n denote the total time during [0, T] in which the station contains exactly n customers.



Notations

• Suppose during time [0, T], totally N(T) customers have entered the station, and let $W_1, W_2, \ldots, W_{N(T)}$ denote the time each customer spends in the station up to time T.[†]

[†]The time includes both the waiting time in queue and the time in server. The part after T is not counted.¹⁰⁰

- Suppose during time [0, T], totally N(T) customers have entered the station, and let $W_1, W_2, \ldots, W_{N(T)}$ denote the time each customer spends in the station up to time T.[†]
- Let $\widehat{W}(T)$ denote the average sojourn time (逗留时间) in the station up to time T:

$$\widehat{W}(T) \coloneqq \frac{1}{N(T)} \sum_{i=1}^{N(T)} W_i.$$

[†]The time includes both the waiting time in queue and the time in server. The part after T is not counted.¹⁰⁰

- Suppose during time [0, T], totally N(T) customers have entered the station, and let $W_1, W_2, \ldots, W_{N(T)}$ denote the time each customer spends in the station up to time T.[†]
- Let $\widehat{W}(T)$ denote the average sojourn time (逗留时间) in the station up to time T:

$$\widehat{W}(T) \coloneqq \frac{1}{N(T)} \sum_{i=1}^{N(T)} W_i.$$

- In a similar way, we can also define
 - $\widehat{L}_Q(T)$ The average number of customers in the *queue* up to time T.
 - $\widehat{W}_Q(T)$ The average *waiting* time in the *queue* up to time T.

[†]The time includes both the waiting time in queue and the time in server. The part after T is not counted.

- Now we consider the long-run measures.
 - L The long-run average number of customers in the station:

$$L \coloneqq \lim_{T \to \infty} \widehat{L}(T).$$

- W – The long-run average sojourn time in the station:

$$W\coloneqq \lim_{T\to\infty}\widehat{W}(T).$$

• L_Q – The long-run average number of customers in the queue:

$$L_Q \coloneqq \lim_{T \to \infty} \widehat{L}_Q(T).$$

• W_Q – The long-run average waiting time in the queue:

$$W_Q \coloneqq \lim_{T \to \infty} \widehat{W}_Q(T).$$

- Now we consider the long-run measures.
 - L The long-run average number of customers in the station:

$$L \coloneqq \lim_{T \to \infty} \widehat{L}(T).$$

• W – The long-run average sojourn time in the station:

$$W\coloneqq \lim_{T\to\infty}\widehat{W}(T).$$

• L_Q – The long-run average number of customers in the queue:

$$L_Q \coloneqq \lim_{T \to \infty} \widehat{L}_Q(T).$$

• W_Q – The long-run average waiting time in the queue:

$$W_Q \coloneqq \lim_{T \to \infty} \widehat{W}_Q(T).$$

• Question: When will L, W, L_Q and W_Q exist (and $< \infty$)?

• We also define the *limiting probability* that there will be exactly *n* customers in the station as time goes to infinity:

$$P_n \coloneqq \lim_{t \to \infty} \mathbb{P}\{L(t) = n\}, \quad n = 0, 1, 2, \dots$$

• We also define the *limiting probability* that there will be exactly *n* customers in the station as time goes to infinity:

$$P_n \coloneqq \lim_{t \to \infty} \mathbb{P}\{L(t) = n\}, \quad n = 0, 1, 2, \dots$$

• Question: When will P_n exist?

• We also define the *limiting probability* that there will be exactly *n* customers in the station as time goes to infinity:

$$P_n \coloneqq \lim_{t \to \infty} \mathbb{P}\{L(t) = n\}, \quad n = 0, 1, 2, \dots$$

- Question: When will P_n exist?
- Moreover, for an arbitrary X/Y/s/K queue
 - Let λ denote the arrival rate, i.e.,

$$\mathbb{E}[\text{interarrival time}] = \frac{1}{\lambda}.$$

• Let μ denote the service rate in one server, i.e.,

$$\mathbb{E}[\text{service time}] = \frac{1}{\mu}.$$

• Question: When will L, W, L_Q , W_Q and P_n exist?

- Question: When will L, W, L_Q , W_Q and P_n exist?
- Answer: When the queue is stable.[†]

[†]That is to say, the underlying Markov chain is positive recurrent.

- Question: When will L, W, L_Q , W_Q and P_n exist?
- Answer: When the queue is **stable**.[†]
- Question: When will the queue be stable?!

General Results

[†]That is to say, the underlying Markov chain is positive recurrent.

- Question: When will L, W, L_Q , W_Q and P_n exist?
- Answer: When the queue is **stable**.[†]
- Question: When will the queue be stable?!

Theorem 1 (Condition of Stability)

For an $X/Y/s/\infty$ queue (i.e., infinite capacity) with arrival rate λ and service rate $\mu,$ it is stable if

 $\lambda < s\mu$.

And, an X/Y/s/K queue (i.e., finite capacity) will always be stable.

[†]That is to say, the underlying Markov chain is positive recurrent.

General Results

► General Results

• Recall that $P_n \coloneqq \lim_{t \to \infty} \mathbb{P}\{L(t) = n\}, n = 0, 1, 2, \dots$

- Recall that $P_n := \lim_{t \to \infty} \mathbb{P}\{L(t) = n\}, n = 0, 1, 2, \dots$
- P_n is also called the probability that there are exactly n customers in the station when it is in the *steady state*.
 - Since the system is stable and run for infinitely long time, it should enters some steady state (i.e., has nothing to do with the initial state).

- Recall that $P_n \coloneqq \lim_{t \to \infty} \mathbb{P}\{L(t) = n\}, n = 0, 1, 2, \dots$
- P_n is also called the probability that there are exactly n customers in the station when it is in the *steady state*.
 - Since the system is stable and run for infinitely long time, it should enters some steady state (i.e., has nothing to do with the initial state).
- L can also be written as $L := \sum_{n=0}^{\infty} nP_n$ (see next slide).
 - *L* is also called the expected number of customers in the station in steady state;
 - W is also called the expected sojourn time in the station in steady state;
 - L_Q is also called the expected number of customers in the queue in steady state;
 - W_Q is also called the expected waiting time in the queue in steady state.

► General Results

• Recall that $P_n \coloneqq \lim_{t \to \infty} \mathbb{P}\{L(t) = n\}, n = 0, 1, 2, \dots$

- Recall that $P_n := \lim_{t \to \infty} \mathbb{P}\{L(t) = n\}, n = 0, 1, 2, \dots$
- It turns out that, when the queue is stable, P_n also equals the long-run proportion of time that the station contains exactly n customers,[†] i.e., with probability 1, for all n,

 $P_n = \lim_{T \to \infty} \frac{\text{amount of time during } [0,T] \text{ that station contains } n \text{ customers}}{T}$

[†]A sufficient condition is that the queueing process is regenerative, which is satisfied in our discussion.¹¹⁰⁰ TONG UNIV

- Recall that $P_n := \lim_{t \to \infty} \mathbb{P}\{L(t) = n\}, n = 0, 1, 2, \dots$
- It turns out that, when the queue is *stable*, P_n also equals the long-run proportion of time that the station contains exactly n customers,[†] i.e., with probability 1, for all n,

 $P_n = \lim_{T \to \infty} \frac{\text{amount of time during } [0,T] \text{ that station contains } n \text{ customers}}{T}$

• Recall $\widehat{L}(T) \coloneqq \frac{1}{T} \int_0^T L(t) dt = \sum_{n=0}^\infty n\left(\frac{T_n}{T}\right)$, then

(金) 上海文道大学

[†]A sufficient condition is that the queueing process is regenerative, which is satisfied in our discussion.^{11 MO TONG UNIV}

- Recall that $P_n := \lim_{t \to \infty} \mathbb{P}\{L(t) = n\}, n = 0, 1, 2, \dots$
- It turns out that, when the queue is *stable*, P_n also equals the long-run proportion of time that the station contains exactly n customers,[†] i.e., with probability 1, for all n,

 $P_n = \lim_{T \to \infty} \frac{\text{amount of time during } [0, T] \text{ that station contains } n \text{ customers}}{T}$ • Recall $\widehat{L}(T) \coloneqq \frac{1}{T} \int_0^T L(t) dt = \sum_{n=0}^{\infty} n\left(\frac{T_n}{T}\right)$, then $L \coloneqq \lim_{T \to \infty} \widehat{L}(T) = \lim_{T \to \infty} \sum_{n=0}^{\infty} n\left(\frac{T_n}{T}\right)$

[†]A sufficient condition is that the queueing process is regenerative, which is satisfied in our discussion.⁴ INO TONG UNIVERSE

- Recall that $P_n := \lim_{t \to \infty} \mathbb{P}\{L(t) = n\}, n = 0, 1, 2, \dots$
- It turns out that, when the queue is *stable*, P_n also equals the long-run proportion of time that the station contains exactly n customers,[†] i.e., with probability 1, for all n,

 $P_n = \lim_{T \to \infty} \frac{\text{amount of time during } [0, T] \text{ that station contains } n \text{ customers}}{T}.$ • Recall $\hat{L}(T) \coloneqq \frac{1}{T} \int_0^T L(t) dt = \sum_{n=0}^{\infty} n\left(\frac{T_n}{T}\right)$, then

$$\begin{split} L &\coloneqq \lim_{T \to \infty} \widehat{L}(T) = \lim_{T \to \infty} \sum_{n=0}^{\infty} n\left(\frac{T_n}{T}\right) \\ &= \sum_{n=0}^{\infty} \lim_{T \to \infty} n\left(\frac{T_n}{T}\right) \quad \text{(by DCT)} \end{split}$$

[†]A sufficient condition is that the queueing process is regenerative, which is satisfied in our discussion.^{11 June Towe United}

- Recall that $P_n := \lim_{t \to \infty} \mathbb{P}\{L(t) = n\}, n = 0, 1, 2, \dots$
- It turns out that, when the queue is stable, P_n also equals the long-run proportion of time that the station contains exactly n customers,[†] i.e., with probability 1, for all n,

• Recall $\widehat{L}(T) \coloneqq \frac{1}{T} \int_0^T L(t) dt = \sum_{m=0}^{\infty} n\left(\frac{T_n}{T}\right)$, then $L \coloneqq \lim_{T \to \infty} \widehat{L}(T) = \lim_{T \to \infty} \sum_{n=1}^{\infty} n\left(\frac{T_n}{T}\right)$ $=\sum_{n=1}^{\infty}\lim_{T\to\infty}n\left(\frac{T_n}{T}\right) \quad \text{(by DCT)}$ $=\sum nP_n.$

[†]A sufficient condition is that the queueing process is regenerative, which is satisfied in our discussion.^{11 June Towe Unit}

- Little's Law (守恒方程) is one of the most general and versatile laws in queueing theory.
 - It is named after John D.C. Little, who was the first to prove a version of it, in 1961.
 - When used in clever ways, Little's Law can lead to remarkably simple derivations.

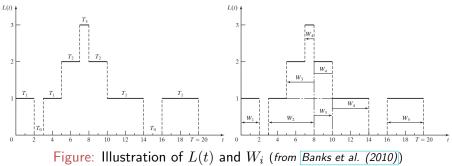
- Little's Law (守恒方程) is one of the most general and versatile laws in queueing theory.
 - It is named after John D.C. Little, who was the first to prove a version of it, in 1961.
 - When used in clever ways, Little's Law can lead to remarkably simple derivations.

Theorem 2 (Little's Law – Empirical Version)

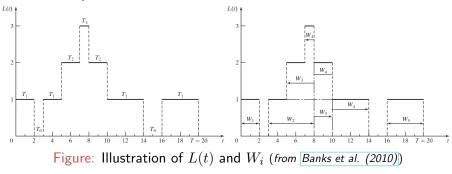
Define the observed entering rate $\widehat{\lambda} \coloneqq N(T)/T$, then $\widehat{L}(T) = \widehat{\lambda}\widehat{W}(T), \quad \widehat{L}_Q(T) = \widehat{\lambda}\widehat{W}_Q(T).$

► Little's Law

• Verify Little's Law.

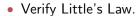


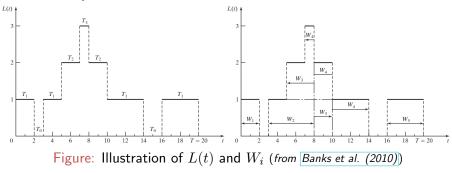
► Little's Law



$$\widehat{\lambda} = N(T)/T = 5/20 = 0.25.$$

► Little's Law

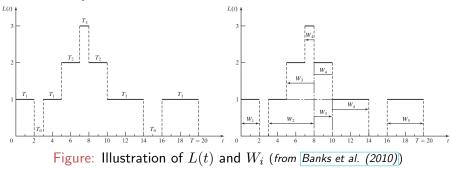




$$\widehat{\lambda} = N(T)/T = 5/20 = 0.25.$$

$$\widehat{W}(T) = \frac{1}{N(T)} \sum_{i=1}^{N(T)} W_i = \frac{1}{5}(2+5+5+7+4) = \frac{23}{5} = 4.6.$$

► Little's Law

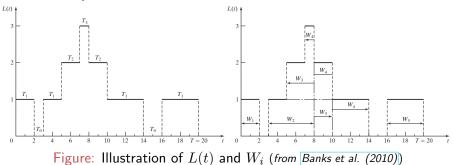


$$\widehat{\lambda} = N(T)/T = 5/20 = 0.25.$$

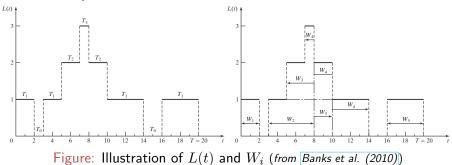
$$\widehat{W}(T) = \frac{1}{N(T)} \sum_{i=1}^{N(T)} W_i = \frac{1}{5}(2+5+5+7+4) = \frac{23}{5} = 4.6.$$

$$\widehat{L}(T) = \frac{1}{T} \sum_{n=0}^{\infty} nT_n = \frac{1}{20}(0 \times 3 + 1 \times 12 + 2 \times 4 + 3 \times 1) = \frac{23}{20} = 1.15.$$

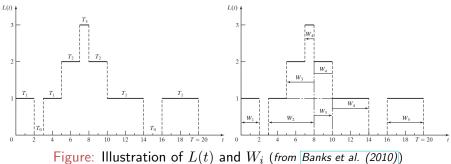
► Little's Law



$$\begin{split} \widehat{\lambda} &= N(T)/T = 5/20 = 0.25. \\ \widehat{W}(T) &= \frac{1}{N(T)} \sum_{i=1}^{N(T)} W_i = \frac{1}{5}(2+5+5+7+4) = \frac{23}{5} = 4.6. \\ \widehat{L}(T) &= \frac{1}{T} \sum_{n=0}^{\infty} nT_n = \frac{1}{20}(0 \times 3 + 1 \times 12 + 2 \times 4 + 3 \times 1) = \frac{23}{20} = 1.15. \\ \text{So, } \widehat{\lambda}\widehat{W}(T) &= 0.25 \times 4.6 = 1.15 = \widehat{L}(T). \end{split}$$



$$\begin{split} \widehat{\lambda} &= N(T)/T = 5/20 = 0.25. \\ \widehat{W}(T) &= \frac{1}{N(T)} \sum_{i=1}^{N(T)} W_i = \frac{1}{5}(2+5+5+7+4) = \frac{23}{5} = 4.6. \\ \widehat{L}(T) &= \frac{1}{T} \sum_{n=0}^{\infty} nT_n = \frac{1}{20}(0 \times 3 + 1 \times 12 + 2 \times 4 + 3 \times 1) = \frac{23}{20} = 1.15. \\ \text{So, } \widehat{\lambda}\widehat{W}(T) &= 0.25 \times 4.6 = 1.15 = \widehat{L}(T). \end{split}$$
 (Why it always holds?)



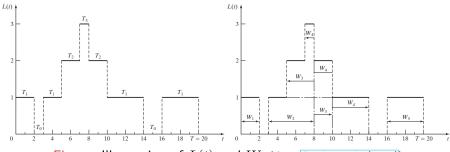


Figure: Illustration of L(t) and W_i (from Banks et al. (2010))

$$\widehat{L}(T) = \frac{1}{T} \sum_{n=0}^{\infty} nT_n = \frac{1}{T} \times \text{area}.$$

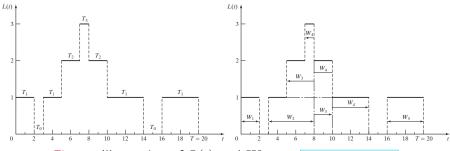


Figure: Illustration of L(t) and W_i (from Banks et al. (2010))

$$\begin{split} \widehat{L}(T) &= \frac{1}{T} \sum_{n=0}^{\infty} nT_n = \frac{1}{T} \times \text{area.} \\ \widehat{\lambda} \widehat{W}(T) &= \frac{N(T)}{T} \frac{1}{N(T)} \sum_{i=1}^{N(T)} W_i \end{split}$$

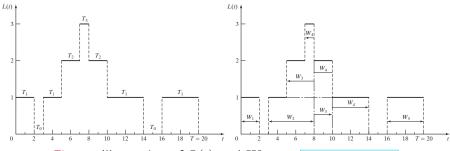


Figure: Illustration of L(t) and W_i (from Banks et al. (2010))

$$\begin{split} \widehat{L}(T) &= \frac{1}{T} \sum_{n=0}^{\infty} nT_n = \frac{1}{T} \times \text{area.} \\ \widehat{\lambda} \widehat{W}(T) &= \frac{N(T)}{T} \frac{1}{N(T)} \sum_{i=1}^{N(T)} W_i = \frac{1}{T} \sum_{i=1}^{N(T)} W_i \end{split}$$

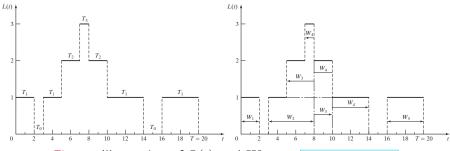


Figure: Illustration of L(t) and W_i (from Banks et al. (2010))

$$\begin{split} \widehat{L}(T) &= \frac{1}{T} \sum_{n=0}^{\infty} nT_n = \frac{1}{T} \times \text{area.} \\ \widehat{\lambda} \widehat{W}(T) &= \frac{N(T)}{T} \frac{1}{N(T)} \sum_{i=1}^{N(T)} W_i = \frac{1}{T} \sum_{i=1}^{N(T)} W_i = \frac{1}{T} \times \text{area.} \end{split}$$

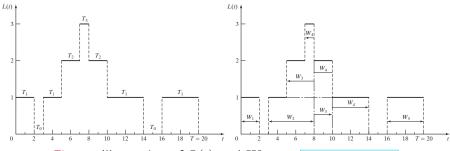


Figure: Illustration of L(t) and W_i (from Banks et al. (2010))

• Why it always holds?

$$\begin{split} \widehat{L}(T) &= \frac{1}{T} \sum_{n=0}^{\infty} nT_n = \frac{1}{T} \times \text{area.} \\ \widehat{\lambda} \widehat{W}(T) &= \frac{N(T)}{T} \frac{1}{N(T)} \sum_{i=1}^{N(T)} W_i = \frac{1}{T} \sum_{i=1}^{N(T)} W_i = \frac{1}{T} \times \text{area.} \\ \text{So, } \widehat{L}(T) &= \widehat{\lambda} \widehat{W}(T) \text{ always holds.} \end{split}$$

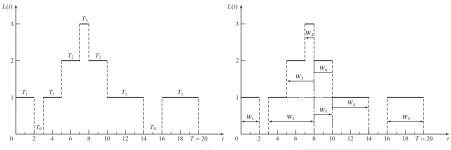


Figure: Illustration of L(t) and W_i (from Banks et al. (2010))

• Why it always holds?

$$\begin{split} \widehat{L}(T) &= \frac{1}{T} \sum_{n=0}^{\infty} nT_n = \frac{1}{T} \times \text{area.} \\ \widehat{\lambda} \widehat{W}(T) &= \frac{N(T)}{T} \frac{1}{N(T)} \sum_{i=1}^{N(T)} W_i = \frac{1}{T} \sum_{i=1}^{N(T)} W_i = \frac{1}{T} \times \text{area.} \\ \text{So, } \widehat{L}(T) &= \widehat{\lambda} \widehat{W}(T) \text{ always holds.} \end{split}$$

• The same argument for $\widehat{L}_Q(T) = \widehat{\lambda} \widehat{W}_Q(T)$.

Theorem 3 (Little's Law – Limit/Expectation Version)

For a stable queue, let λ^{\ast} denote the arrival rate or entering rate, then

$$L = \lambda^* W$$
, $L_Q = \lambda^* W_Q$.

Caution: When λ^* is the arrival rate, the time average (W, W_Q) is based on all customers (who enters the station and who are lost); When λ^* is the entering rate, the time average is only based on the customers who enters the station.

Theorem 3 (Little's Law – Limit/Expectation Version)

For a stable queue, let λ^{\ast} denote the arrival rate or entering rate, then

$$L = \lambda^* W$$
, $L_Q = \lambda^* W_Q$.

Caution: When λ^* is the arrival rate, the time average (W, W_Q) is based on all customers (who enters the station and who are lost); When λ^* is the entering rate, the time average is only based on the customers who enters the station.

• Some Remarks:

- For a customer who is lost (due to the finite capacity), he spends 0 amount of time in the station (or queue).
- Once we know anyone of L, W, L_Q and W_Q , we can compute the rest using Little's Law.

- M/M/1 Queue[†]
 - The interarrival times are iid random variables with $\mathrm{Exp}(\lambda)$ distribution, that is to say, customers arrive according to a Poisson process with rate $\lambda.$
 - The service times are iid random variables with $\mathrm{Exp}(\mu)$ distribution.
 - The customers are served in an FCFS fashion by a *single* server.
 - The capacity is unlimited, i.e., waiting space is unlimited.
 - M/M/1 queue is stable if and only if $\lambda < \mu$.
 - Due to unlimited capacity, arrival rate = entering rate.

 $^\dagger M/M/1$ Queue \subset Birth and Death Process with Infinite Capacity \subset Continuous-Time Markov Chain. Into Torog Univ

- M/M/1 Queue[†]
 - The interarrival times are iid random variables with $\mathrm{Exp}(\lambda)$ distribution, that is to say, customers arrive according to a Poisson process with rate $\lambda.$
 - The service times are iid random variables with $\mathrm{Exp}(\mu)$ distribution.
 - The customers are served in an FCFS fashion by a *single* server.
 - The capacity is unlimited, i.e., waiting space is unlimited.
 - M/M/1 queue is stable if and only if $\lambda < \mu$.
 - Due to unlimited capacity, arrival rate = entering rate.
- We now want to compute all the measures $P_n, \ L, \ W, \ L_Q$ and $W_Q.$

M/M/1 Queue \subset Birth and Death Process with Infinite Capacity \subset Continuous-Time Markov Chain.¹ Into Towe UN

▶ M/M/1 Queue

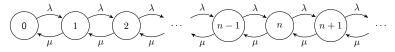
- Recall that L can be computed via $L = \sum_{n=0}^{\infty} nP_n$, where P_n has two interpretations:
 - Long-run proportion of time that the station contains exactly *n* customers;
 - Probability that there are exactly *n* customers in the station as time goes to infinity (or equivalently, in the steady state).

 $\blacktriangleright M/M/1$ Queue

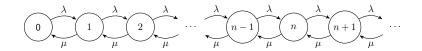
- Recall that L can be computed via $L = \sum_{n=0}^{\infty} nP_n$, where P_n has two interpretations:
 - Long-run proportion of time that the station contains exactly *n* customers;
 - Probability that there are exactly *n* customers in the station as time goes to infinity (or equivalently, in the steady state).
- Define the **state** as the the number of customers in the system.

▶ M/M/1 Queue

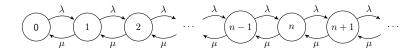
- Recall that L can be computed via $L = \sum_{n=0}^{\infty} nP_n$, where P_n has two interpretations:
 - Long-run proportion of time that the station contains exactly *n* customers;
 - Probability that there are exactly *n* customers in the station as time goes to infinity (or equivalently, in the steady state).
- Define the **state** as the the number of customers in the system.
- The state space diagram is as follows:



▶ M/M/1 Queue



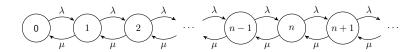
CC BY-SA



Key Observation 1

Rate at which the process leaves state n

= Rate at which the process enters state n.



Key Observation 1

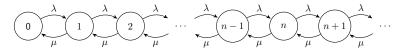
Rate at which the process leaves state n

= Rate at which the process enters state n.

Heuristic Proof.

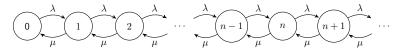
- In any time interval, the number of transitions into state *n* must equal to within 1 the number of transitions out of state *n*. (Why?)
- Hence, in the long run, the rate into state n must equal the rate out of state n.

▶ M/M/1 Queue



CC BY-SA

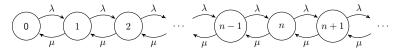
▶ M/M/1 Queue



Key Observation 2

Rate at which the process leaves state $0 = P_0 \lambda$; Rate at which the process leaves state $n = P_n(\mu + \lambda)$, $n \ge 1$; Rate at which the process enters state $0 = P_1 \mu$; Rate at which the process enters state $n = P_{n-1}\lambda + P_{n+1}\mu$, $n \ge 1$.

▶ M/M/1 Queue



Key Observation 2

Rate at which the process leaves state $0 = P_0\lambda$; Rate at which the process leaves state $n = P_n(\mu + \lambda)$, $n \ge 1$; Rate at which the process enters state $0 = P_1\mu$; Rate at which the process enters state $n = P_{n-1}\lambda + P_{n+1}\mu$, $n \ge 1$.

Fact

If X_1,\ldots,X_n are independent random variables, and $X_i\sim \mathrm{Exp}(\lambda_i)$, $i=1,\ldots,n$, then

$$\min\{X_1,\ldots,X_n\}\sim \operatorname{Exp}(\lambda_1+\cdots+\lambda_n).$$

CC BY-SA

Theorem 4 (Limiting Distribution of M/M/1 Queue)

For an M/M/1 queue, when it is stable ($\lambda < \mu$), its limiting (steady-state) distribution is given by

$$P_n = (1-\rho)\rho^n, \quad n \ge 0,$$

where $\rho \coloneqq \lambda/\mu < 1$. (ρ is called the *server utilization*.)

Theorem 4 (Limiting Distribution of M/M/1 Queue)

For an M/M/1 queue, when it is stable ($\lambda < \mu$), its limiting (steady-state) distribution is given by

$$P_n = (1-\rho)\rho^n, \quad n \ge 0,$$

where $\rho \coloneqq \lambda/\mu < 1$. (ρ is called the *server utilization*.)

Proof.

Theorem 4 (Limiting Distribution of M/M/1 Queue)

For an M/M/1 queue, when it is stable ($\lambda < \mu$), its limiting (steady-state) distribution is given by

$$P_n = (1 - \rho)\rho^n, \quad n \ge 0,$$

where $\rho \coloneqq \lambda/\mu < 1$. (ρ is called the *server utilization*.)

Proof. Due to Observations 1 & 2,

State	Rate Process Leaves		Rate Process Enters
0	$P_0\lambda$	=	$P_1\mu$
n , $n \geq 1$	$P_n(\mu + \lambda)$	=	$P_{n-1}\lambda + P_{n+1}\mu$

Theorem 4 (Limiting Distribution of M/M/1 Queue)

For an M/M/1 queue, when it is stable ($\lambda < \mu$), its limiting (steady-state) distribution is given by

$$P_n = (1 - \rho)\rho^n, \quad n \ge 0,$$

where $\rho \coloneqq \lambda/\mu < 1$. (ρ is called the *server utilization*.)

Proof. Due to Observations 1 & 2,

 $\begin{array}{rcl} \mbox{State} & \mbox{Rate Process Leaves} & \mbox{Rate Process Enters} \\ 0 & P_0\lambda & = & P_1\mu \\ n, n \geq 1 & P_n(\mu + \lambda) & = & P_{n-1}\lambda + P_{n+1}\mu \end{array}$

Rewriting these equations gives

$$\begin{split} P_0\lambda &= P_1\mu, \\ P_n\lambda &= P_{n+1}\mu + (P_{n-1}\lambda - P_n\mu), \quad n \geq 1. \end{split}$$

▶ M/M/1 Queue

Recall that

$$\begin{split} P_0\lambda &= P_1\mu,\\ P_n\lambda &= P_{n+1}\mu + (P_{n-1}\lambda - P_n\mu), \quad n \geq 1. \end{split}$$

▶ M/M/1 Queue

Recall that

$$\begin{split} P_0\lambda &= P_1\mu,\\ P_n\lambda &= P_{n+1}\mu + (P_{n-1}\lambda - P_n\mu), \quad n \geq 1. \end{split}$$

Or, equivalently,

$$\begin{split} P_0\lambda &= P_1\mu,\\ P_1\lambda &= P_2\mu + (P_0\lambda - P_1\mu) = P_2\mu, \end{split}$$

▶ M/M/1 Queue

Recall that

$$\begin{split} P_0\lambda &= P_1\mu,\\ P_n\lambda &= P_{n+1}\mu + (P_{n-1}\lambda - P_n\mu), \quad n \geq 1. \end{split}$$

Or, equivalently,

$$\begin{split} P_{0}\lambda &= P_{1}\mu, \\ P_{1}\lambda &= P_{2}\mu + (P_{0}\lambda - P_{1}\mu) = P_{2}\mu, \\ P_{2}\lambda &= P_{3}\mu + (P_{1}\lambda - P_{2}\mu) = P_{3}\mu, \end{split}$$

▶ M/M/1 Queue

Recall that

$$\begin{split} P_0\lambda &= P_1\mu,\\ P_n\lambda &= P_{n+1}\mu + (P_{n-1}\lambda - P_n\mu), \quad n \geq 1. \end{split}$$

Or, equivalently,

$$\begin{split} P_{0}\lambda &= P_{1}\mu, \\ P_{1}\lambda &= P_{2}\mu + (P_{0}\lambda - P_{1}\mu) = P_{2}\mu, \\ P_{2}\lambda &= P_{3}\mu + (P_{1}\lambda - P_{2}\mu) = P_{3}\mu, \\ P_{n}\lambda &= P_{n+1}\mu + (P_{n-1}\lambda - P_{n}\mu) = P_{n+1}\mu, \quad n \geq 1. \end{split}$$

▶ M/M/1 Queue

Recall that

$$\begin{split} P_0\lambda &= P_1\mu,\\ P_n\lambda &= P_{n+1}\mu + (P_{n-1}\lambda - P_n\mu), \quad n \geq 1. \end{split}$$

Or, equivalently,

$$\begin{split} P_{0}\lambda &= P_{1}\mu, \\ P_{1}\lambda &= P_{2}\mu + (P_{0}\lambda - P_{1}\mu) = P_{2}\mu, \\ P_{2}\lambda &= P_{3}\mu + (P_{1}\lambda - P_{2}\mu) = P_{3}\mu, \\ P_{n}\lambda &= P_{n+1}\mu + (P_{n-1}\lambda - P_{n}\mu) = P_{n+1}\mu, \quad n \geq 1. \end{split}$$

Let $\rho\coloneqq\lambda/\mu~(<1),$ solving in terms of P_0 yields $P_1=P_0\rho,$

▶ M/M/1 Queue

Recall that

$$\begin{split} P_0\lambda &= P_1\mu,\\ P_n\lambda &= P_{n+1}\mu + (P_{n-1}\lambda - P_n\mu), \quad n \geq 1. \end{split}$$

Or, equivalently,

$$\begin{split} P_{0}\lambda &= P_{1}\mu, \\ P_{1}\lambda &= P_{2}\mu + (P_{0}\lambda - P_{1}\mu) = P_{2}\mu, \\ P_{2}\lambda &= P_{3}\mu + (P_{1}\lambda - P_{2}\mu) = P_{3}\mu, \\ P_{n}\lambda &= P_{n+1}\mu + (P_{n-1}\lambda - P_{n}\mu) = P_{n+1}\mu, \quad n \geq 1. \end{split}$$

Let $\rho \coloneqq \lambda/\mu$ (< 1), solving in terms of P_0 yields $P_1 = P_0 \rho$, $P_2 = P_1 \rho = P_0 \rho^2$,

▶ M/M/1 Queue

Recall that

$$\begin{split} P_0\lambda &= P_1\mu,\\ P_n\lambda &= P_{n+1}\mu + (P_{n-1}\lambda - P_n\mu), \quad n \geq 1. \end{split}$$

Or, equivalently,

$$\begin{split} P_{0}\lambda &= P_{1}\mu, \\ P_{1}\lambda &= P_{2}\mu + (P_{0}\lambda - P_{1}\mu) = P_{2}\mu, \\ P_{2}\lambda &= P_{3}\mu + (P_{1}\lambda - P_{2}\mu) = P_{3}\mu, \\ P_{n}\lambda &= P_{n+1}\mu + (P_{n-1}\lambda - P_{n}\mu) = P_{n+1}\mu, \quad n \geq 1. \end{split}$$

Let $\rho := \lambda/\mu$ (< 1), solving in terms of P_0 yields $P_1 = P_0\rho$, $P_2 = P_1\rho = P_0\rho^2$, $P_n = P_{n-1}\rho = P_0\rho^n$, n > 1.

▶ M/M/1 Queue

Recall that

$$\begin{split} P_0\lambda &= P_1\mu,\\ P_n\lambda &= P_{n+1}\mu + (P_{n-1}\lambda - P_n\mu), \quad n \geq 1. \end{split}$$

Or, equivalently,

$$\begin{split} P_{0}\lambda &= P_{1}\mu, \\ P_{1}\lambda &= P_{2}\mu + (P_{0}\lambda - P_{1}\mu) = P_{2}\mu, \\ P_{2}\lambda &= P_{3}\mu + (P_{1}\lambda - P_{2}\mu) = P_{3}\mu, \\ P_{n}\lambda &= P_{n+1}\mu + (P_{n-1}\lambda - P_{n}\mu) = P_{n+1}\mu, \quad n \geq 1. \end{split}$$

Let $\rho \coloneqq \lambda/\mu$ (< 1), solving in terms of P_0 yields $P_1 = P_0\rho$, $P_2 = P_1\rho = P_0\rho^2$, $P_n = P_{n-1}\rho = P_0\rho^n$, $n \ge 1$.

Since $1=\Sigma_{n=0}^{\infty}P_n=P_0\Sigma_{n=0}^{\infty}\rho^n=P_0/(1-\rho),$ we have

▶ M/M/1 Queue

Recall that

$$\begin{split} P_0\lambda &= P_1\mu,\\ P_n\lambda &= P_{n+1}\mu + (P_{n-1}\lambda - P_n\mu), \quad n \geq 1. \end{split}$$

Or, equivalently,

$$\begin{split} P_{0}\lambda &= P_{1}\mu, \\ P_{1}\lambda &= P_{2}\mu + (P_{0}\lambda - P_{1}\mu) = P_{2}\mu, \\ P_{2}\lambda &= P_{3}\mu + (P_{1}\lambda - P_{2}\mu) = P_{3}\mu, \\ P_{n}\lambda &= P_{n+1}\mu + (P_{n-1}\lambda - P_{n}\mu) = P_{n+1}\mu, \quad n \geq 1. \end{split}$$

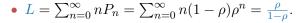
Let $\rho \coloneqq \lambda/\mu$ (< 1), solving in terms of P_0 yields $P_1 = P_0 \rho$, $P_2 = P_1 \rho = P_0 \rho^2$, $P_n = P_{n-1} \rho = P_0 \rho^n$, $n \ge 1$.

Since $1 = \sum_{n=0}^{\infty} P_n = P_0 \sum_{n=0}^{\infty} \rho^n = P_0/(1-\rho)$, we have $P_0 = 1-\rho$, and $P_n = (1-\rho)\rho^n$, $n \ge 1$.

•
$$L = \sum_{n=0}^{\infty} n P_n = \sum_{n=0}^{\infty} n(1-\rho)\rho^n = \frac{\rho}{1-\rho}$$

•
$$L = \sum_{n=0}^{\infty} n P_n = \sum_{n=0}^{\infty} n(1-\rho)\rho^n = \frac{\rho}{1-\rho}$$

• Using Little's Law, $W = L/\lambda = \frac{1}{\lambda} \frac{\rho}{1-\rho} = \frac{1}{\mu-\lambda}$.



• Using Little's Law, $W = L/\lambda = \frac{1}{\lambda} \frac{\rho}{1-\rho} = \frac{1}{\mu-\lambda}$.

•
$$L_Q = \sum_{n=1}^{\infty} (n-1)P_n = \sum_{n=1}^{\infty} (n-1)(1-\rho)\rho^n = \frac{\rho^2}{1-\rho}.$$

► M/M/1 Queue

•
$$L = \sum_{n=0}^{\infty} n P_n = \sum_{n=0}^{\infty} n(1-\rho)\rho^n = \frac{\rho}{1-\rho}$$
.

• Using Little's Law, $W = L/\lambda = \frac{1}{\lambda} \frac{\rho}{1-\rho} = \frac{1}{\mu-\lambda}$.

•
$$L_Q = \sum_{n=1}^{\infty} (n-1)P_n = \sum_{n=1}^{\infty} (n-1)(1-\rho)\rho^n = \frac{\rho^2}{1-\rho}$$
.

• Using Little's Law, $W_Q = L_Q/\lambda = \frac{1}{\lambda} \frac{\rho^2}{1-\rho} = \frac{1}{\mu} \frac{\rho}{1-\rho} = \frac{\rho}{\mu-\lambda}$.

•
$$L = \sum_{n=0}^{\infty} n P_n = \sum_{n=0}^{\infty} n(1-\rho)\rho^n = \frac{\rho}{1-\rho}$$
.

• Using Little's Law, $W = L/\lambda = \frac{1}{\lambda} \frac{\rho}{1-\rho} = \frac{1}{\mu-\lambda}$.

•
$$L_Q = \sum_{n=1}^{\infty} (n-1)P_n = \sum_{n=1}^{\infty} (n-1)(1-\rho)\rho^n = \frac{\rho^2}{1-\rho}$$
.

- Using Little's Law, $W_Q = L_Q/\lambda = \frac{1}{\lambda} \frac{\rho^2}{1-\rho} = \frac{1}{\mu} \frac{\rho}{1-\rho} = \frac{\rho}{\mu-\lambda}$.
- Or, $W_Q = W \mathbb{E}[\text{service time}] = \frac{1}{\mu \lambda} \frac{1}{\mu} = \frac{\lambda}{\mu(\mu \lambda)} = \frac{\rho}{\mu \lambda}.$

39 / 64

•
$$L = \sum_{n=0}^{\infty} n P_n = \sum_{n=0}^{\infty} n(1-\rho)\rho^n = \frac{\rho}{1-\rho}$$
.

• Using Little's Law, $W = L/\lambda = \frac{1}{\lambda} \frac{\rho}{1-\rho} = \frac{1}{\mu-\lambda}$.

•
$$L_Q = \sum_{n=1}^{\infty} (n-1)P_n = \sum_{n=1}^{\infty} (n-1)(1-\rho)\rho^n = \frac{\rho^2}{1-\rho}$$
.

- Using Little's Law, $W_Q = L_Q/\lambda = \frac{1}{\lambda} \frac{\rho^2}{1-\rho} = \frac{1}{\mu} \frac{\rho}{1-\rho} = \frac{\rho}{\mu-\lambda}$.
- Or, $W_Q = W \mathbb{E}[\text{service time}] = \frac{1}{\mu \lambda} \frac{1}{\mu} = \frac{\lambda}{\mu(\mu \lambda)} = \frac{\rho}{\mu \lambda}.$
- Using Little's Law, $L_Q = \lambda W_Q = \lambda \frac{\rho}{\mu \lambda} = \frac{\rho^2}{1 \rho}$.

39 / 64

•
$$L = \sum_{n=0}^{\infty} n P_n = \sum_{n=0}^{\infty} n(1-\rho)\rho^n = \frac{\rho}{1-\rho}.$$

• Using Little's Law, $W = L/\lambda = \frac{1}{\lambda} \frac{\rho}{1-\rho} = \frac{1}{\mu-\lambda}$.

•
$$L_Q = \sum_{n=1}^{\infty} (n-1)P_n = \sum_{n=1}^{\infty} (n-1)(1-\rho)\rho^n = \frac{\rho^2}{1-\rho}$$
.

- Using Little's Law, $W_Q = L_Q/\lambda = \frac{1}{\lambda} \frac{\rho^2}{1-\rho} = \frac{1}{\mu} \frac{\rho}{1-\rho} = \frac{\rho}{\mu-\lambda}$.
- Or, $W_Q = W \mathbb{E}[\text{service time}] = \frac{1}{\mu \lambda} \frac{1}{\mu} = \frac{\lambda}{\mu(\mu \lambda)} = \frac{\rho}{\mu \lambda}.$
- Using Little's Law, $L_Q = \lambda W_Q = \lambda \frac{\rho}{\mu \lambda} = \frac{\rho^2}{1 \rho}$.
- Due to unlimited capacity, arrival rate = entering rate, so the time average (W, W_Q) is based on all customers.

SHEN Haihui

(cc) BY-SA

•
$$L = \sum_{n=0}^{\infty} n P_n = \sum_{n=0}^{\infty} n(1-\rho)\rho^n = \frac{\rho}{1-\rho}.$$

• Using Little's Law, $W = L/\lambda = \frac{1}{\lambda} \frac{\rho}{1-\rho} = \frac{1}{\mu-\lambda}$.

•
$$L_Q = \sum_{n=1}^{\infty} (n-1)P_n = \sum_{n=1}^{\infty} (n-1)(1-\rho)\rho^n = \frac{\rho^2}{1-\rho}$$
.

- Using Little's Law, $W_Q = L_Q/\lambda = \frac{1}{\lambda} \frac{\rho^2}{1-\rho} = \frac{1}{\mu} \frac{\rho}{1-\rho} = \frac{\rho}{\mu-\lambda}$.
- Or, $W_Q = W \mathbb{E}[\text{service time}] = \frac{1}{\mu \lambda} \frac{1}{\mu} = \frac{\lambda}{\mu(\mu \lambda)} = \frac{\rho}{\mu \lambda}.$
- Using Little's Law, $L_Q = \lambda W_Q = \lambda \frac{\rho}{\mu \lambda} = \frac{\rho^2}{1 \rho}$.
- Due to unlimited capacity, arrival rate = entering rate, so the time average (W, W_Q) is based on all customers.

•
$$\mathbb{P}(\text{the server is idle}) = P_0 = 1 - \rho.$$

•
$$L = \sum_{n=0}^{\infty} n P_n = \sum_{n=0}^{\infty} n(1-\rho)\rho^n = \frac{\rho}{1-\rho}.$$

• Using Little's Law, $W = L/\lambda = \frac{1}{\lambda} \frac{\rho}{1-\rho} = \frac{1}{\mu-\lambda}$.

•
$$L_Q = \sum_{n=1}^{\infty} (n-1)P_n = \sum_{n=1}^{\infty} (n-1)(1-\rho)\rho^n = \frac{\rho^2}{1-\rho}$$
.

- Using Little's Law, $W_Q = L_Q/\lambda = \frac{1}{\lambda} \frac{\rho^2}{1-\rho} = \frac{1}{\mu} \frac{\rho}{1-\rho} = \frac{\rho}{\mu-\lambda}$.
- Or, $W_Q = W \mathbb{E}[\text{service time}] = \frac{1}{\mu \lambda} \frac{1}{\mu} = \frac{\lambda}{\mu(\mu \lambda)} = \frac{\rho}{\mu \lambda}.$
- Using Little's Law, $L_Q = \lambda W_Q = \lambda \frac{\rho}{\mu \lambda} = \frac{\rho^2}{1 c}$.
- Due to unlimited capacity, arrival rate = entering rate, so the time average (W, W_Q) is based on all customers.
- $\mathbb{P}(\text{the server is idle}) = P_0 = 1 \rho.$
- As $\rho \to 1$, all L, W, L_O and W_O tend to ∞ .

39 / 64

- M/M/s Queue[†]
 - Customers arrive according to a Poisson process with rate λ .
 - The service times are iid random variables with $\mathrm{Exp}(\mu)$ distribution.
 - There are *s* parallel servers.
 - The customers form a single queue and get served by the next available server in an FCFS fashion.
 - The capacity is unlimited, i.e., waiting space is unlimited.
 - M/M/s queue is stable if and only if $\lambda < s\mu$.
 - Due to unlimited capacity, arrival rate = entering rate.

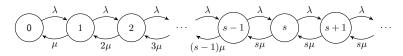
 $^{\dagger}M/M/1$ Queue $\subset M/M/s$ Queue \subset Birth and Death Process with Infinite Capacity \subset CTMC.

- M/M/s Queue[†]
 - Customers arrive according to a Poisson process with rate λ .
 - The service times are iid random variables with $\mathrm{Exp}(\mu)$ distribution.
 - There are *s* parallel servers.
 - The customers form a single queue and get served by the next available server in an FCFS fashion.
 - The capacity is unlimited, i.e., waiting space is unlimited.
 - M/M/s queue is stable if and only if $\lambda < s\mu$.
 - Due to unlimited capacity, arrival rate = entering rate.
- M/M/s queue is a generalized version of M/M/1 queue. Let s = 1, all results should degenerate to those of M/M/1.

 $^{\dagger}M/M/1$ Queue $\subset M/M/s$ Queue \subset Birth and Death Process with Infinite Capacity \subset CTMC.

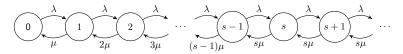
▶ M/M/s Queue

• The state space diagram is as follows:



▶ M/M/s Queue

• The state space diagram is as follows:



Theorem 5 (Limiting Distribution of M/M/s Queue)

For an M/M/s queue, when it is stable ($\lambda < s\mu$), its limiting (steady-state) distribution is given by

$$P_n = \left[\sum_{i=0}^{s} \frac{1}{i!} \left(\frac{\lambda}{\mu}\right)^i + \frac{s^s}{s!} \frac{\rho^{s+1}}{1-\rho}\right]^{-1} \rho_n , \quad n \ge 0,$$

where the server utilization $\rho\coloneqq\lambda/(s\mu)<1$, and

$$\rho_n \coloneqq \begin{cases} \frac{1}{n!} \left(\frac{\lambda}{\mu}\right)^n, & \text{if } 0 \le n \le s, \\ \frac{s^s}{s!} \rho^n, & \text{if } n \ge s+1. \end{cases}$$

SHANGHAI JIAO TONG UNIVERSIT

(cc) BY-SA

•
$$L_Q = \sum_{n=s}^{\infty} (n-s)P_n$$

▶ M/M/s Queue

•
$$L_Q = \sum_{n=s}^{\infty} (n-s) P_n = \sum_{n=s}^{\infty} (n-s) P_0 \rho_n$$

▶ M/M/s Queue

•
$$L_Q = \sum_{n=s}^{\infty} (n-s) P_n = \sum_{n=s}^{\infty} (n-s) P_0 \rho_n = \sum_{k=0}^{\infty} k P_0 \rho_{s+k}$$

▶ M/M/s Queue

•
$$L_Q = \sum_{n=s}^{\infty} (n-s)P_n = \sum_{n=s}^{\infty} (n-s)P_0\rho_n = \sum_{k=0}^{\infty} kP_0\rho_{s+k}$$

= $\sum_{k=1}^{\infty} kP_0\rho_s\rho^k$

▶ M/M/s Queue

•
$$L_Q = \sum_{n=s}^{\infty} (n-s)P_n = \sum_{n=s}^{\infty} (n-s)P_0\rho_n = \sum_{k=0}^{\infty} kP_0\rho_{s+k}$$

= $\sum_{k=1}^{\infty} kP_0\rho_s\rho^k = \sum_{k=1}^{\infty} kP_s\rho^k$

▶ M/M/s Queue

•
$$L_Q = \sum_{n=s}^{\infty} (n-s)P_n = \sum_{n=s}^{\infty} (n-s)P_0\rho_n = \sum_{k=0}^{\infty} kP_0\rho_{s+k}$$

= $\sum_{k=1}^{\infty} kP_0\rho_s\rho^k = \sum_{k=1}^{\infty} kP_s\rho^k = \frac{P_s\rho}{(1-\rho)^2}.$

▶ M/M/s Queue

•
$$L_Q = \sum_{n=s}^{\infty} (n-s)P_n = \sum_{n=s}^{\infty} (n-s)P_0\rho_n = \sum_{k=0}^{\infty} kP_0\rho_{s+k}$$

= $\sum_{k=1}^{\infty} kP_0\rho_s\rho^k = \sum_{k=1}^{\infty} kP_s\rho^k = \frac{P_s\rho}{(1-\rho)^2}.$

• Using Little's Law, $W_Q = L_Q/\lambda = \frac{1}{\lambda} \frac{P_s \rho}{(1-\rho)^2} = \frac{P_s}{s\mu(1-\rho)^2}$.

► M/M/s Queue

•
$$L_Q = \sum_{n=s}^{\infty} (n-s)P_n = \sum_{n=s}^{\infty} (n-s)P_0\rho_n = \sum_{k=0}^{\infty} kP_0\rho_{s+k}$$

= $\sum_{k=1}^{\infty} kP_0\rho_s\rho^k = \sum_{k=1}^{\infty} kP_s\rho^k = \frac{P_s\rho}{(1-\rho)^2}.$

• Using Little's Law, $W_Q = L_Q/\lambda = \frac{1}{\lambda} \frac{P_s \rho}{(1-\rho)^2} = \frac{P_s}{s\mu(1-\rho)^2}$.

•
$$W = W_Q + \mathbb{E}[\text{service time}] = \frac{P_s}{s\mu(1-\rho)^2} + \frac{1}{\mu}$$

▶ M/M/s Queue

•
$$L_Q = \sum_{n=s}^{\infty} (n-s)P_n = \sum_{n=s}^{\infty} (n-s)P_0\rho_n = \sum_{k=0}^{\infty} kP_0\rho_{s+k}$$

= $\sum_{k=1}^{\infty} kP_0\rho_s\rho^k = \sum_{k=1}^{\infty} kP_s\rho^k = \frac{P_s\rho}{(1-\rho)^2}.$

• Using Little's Law,
$$W_Q = L_Q/\lambda = \frac{1}{\lambda} \frac{P_s \rho}{(1-\rho)^2} = \frac{P_s}{s\mu(1-\rho)^2}$$
.

•
$$W = W_Q + \mathbb{E}[\text{service time}] = \frac{P_s}{s\mu(1-\rho)^2} + \frac{1}{\mu}$$

• Using Little's Law,

▶ M/M/s Queue

•
$$L_Q = \sum_{n=s}^{\infty} (n-s)P_n = \sum_{n=s}^{\infty} (n-s)P_0\rho_n = \sum_{k=0}^{\infty} kP_0\rho_{s+k}$$

= $\sum_{k=1}^{\infty} kP_0\rho_s\rho^k = \sum_{k=1}^{\infty} kP_s\rho^k = \frac{P_s\rho}{(1-\rho)^2}.$

• Using Little's Law,
$$W_Q = L_Q/\lambda = \frac{1}{\lambda} \frac{P_s \rho}{(1-\rho)^2} = \frac{P_s}{s\mu(1-\rho)^2}$$
.

•
$$W = W_Q + \mathbb{E}[\text{service time}] = \frac{P_s}{s\mu(1-\rho)^2} + \frac{1}{\mu}$$
.

• Using Little's Law,

$$L = \lambda W = \lambda (W_Q + \frac{1}{\mu}) = L_Q + \frac{\lambda}{\mu} = \frac{P_s \rho}{(1-\rho)^2} + \frac{\lambda}{\mu}.$$

► M/M/s Queue

•
$$L_Q = \sum_{n=s}^{\infty} (n-s)P_n = \sum_{n=s}^{\infty} (n-s)P_0\rho_n = \sum_{k=0}^{\infty} kP_0\rho_{s+k}$$

= $\sum_{k=1}^{\infty} kP_0\rho_s\rho^k = \sum_{k=1}^{\infty} kP_s\rho^k = \frac{P_s\rho}{(1-\rho)^2}.$

• Using Little's Law,
$$W_Q = L_Q/\lambda = \frac{1}{\lambda} \frac{P_s \rho}{(1-\rho)^2} = \frac{P_s}{s\mu(1-\rho)^2}$$
.

•
$$W = W_Q + \mathbb{E}[\text{service time}] = \frac{P_s}{s\mu(1-\rho)^2} + \frac{1}{\mu}$$

• Using Little's Law,

$$L = \lambda W = \lambda (W_Q + \frac{1}{\mu}) = L_Q + \frac{\lambda}{\mu} = \frac{P_s \rho}{(1-\rho)^2} + \frac{\lambda}{\mu}$$

• Due to unlimited capacity, arrival rate = entering rate, so the time average (W, W_Q) is based on all customers.

► M/M/s Queue

•
$$L_Q = \sum_{n=s}^{\infty} (n-s)P_n = \sum_{n=s}^{\infty} (n-s)P_0\rho_n = \sum_{k=0}^{\infty} kP_0\rho_{s+k}$$

= $\sum_{k=1}^{\infty} kP_0\rho_s\rho^k = \sum_{k=1}^{\infty} kP_s\rho^k = \frac{P_s\rho}{(1-\rho)^2}.$

• Using Little's Law,
$$W_Q = L_Q/\lambda = \frac{1}{\lambda} \frac{P_s \rho}{(1-\rho)^2} = \frac{P_s}{s\mu(1-\rho)^2}$$
.

•
$$W = W_Q + \mathbb{E}[\text{service time}] = \frac{P_s}{s\mu(1-\rho)^2} + \frac{1}{\mu}$$
.

• Using Little's Law,

$$L = \lambda W = \lambda (W_Q + \frac{1}{\mu}) = L_Q + \frac{\lambda}{\mu} = \frac{P_s \rho}{(1-\rho)^2} + \frac{\lambda}{\mu}$$

• Due to unlimited capacity, arrival rate = entering rate, so the time average (W, W_Q) is based on all customers.

• As
$$\rho \to 1$$
, all L, W, L_Q and W_Q tend to ∞ .

▶ $M/M/\infty$ Queue

• By letting $s\to\infty$ we get the $M/M/\infty$ queue as a limiting case of the M/M/s queue.

▶ $M/M/\infty$ Queue

- By letting $s\to\infty$ we get the $M/M/\infty$ queue as a limiting case of the M/M/s queue.
- Note: M/M/∞ queue is always stable! (The server utilization is always 0.)

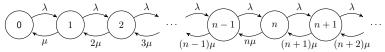
► $M/M/\infty$ Queue

- By letting $s\to\infty$ we get the $M/M/\infty$ queue as a limiting case of the M/M/s queue.
- Note: $M/M/\infty$ queue is always stable! (The server *utilization* is always 0.)
- All the measures can be obtained by letting $s\to\infty$ for those in the case of M/M/s queue.^+

[†]Use the Taylor series (泰勒级数): $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$.

- By letting $s\to\infty$ we get the $M/M/\infty$ queue as a limiting case of the M/M/s queue.
- Note: $M/M/\infty$ queue is always stable! (The server *utilization* is always 0.)
- All the measures can be obtained by letting $s\to\infty$ for those in the case of M/M/s queue.^+

• Or, one can still derive P_n via the state space diagram:



[†]Use the Taylor series (泰勒级数): $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$.

Theorem 6 (Limiting Distribution of $M/M/\infty$ Queue)

For an $M/M/\infty$ queue, its limiting (steady-state) distribution is given by

$$P_n = e^{-\lambda/\mu} \frac{(\lambda/\mu)^n}{n!}, \quad n \ge 0.$$

Theorem 6 (Limiting Distribution of $M/M/\infty$ Queue)

For an $M/M/\infty$ queue, its limiting (steady-state) distribution is given by

$$P_n = e^{-\lambda/\mu} \frac{(\lambda/\mu)^n}{n!}, \quad n \ge 0.$$

• In steady state, the number of customers in an $M/M/\infty$ station $\sim \text{Poisson}(\lambda/\mu)$.

Theorem 6 (Limiting Distribution of $M/M/\infty$ Queue)

For an $M/M/\infty$ queue, its limiting (steady-state) distribution is given by

$$P_n = e^{-\lambda/\mu} \frac{(\lambda/\mu)^n}{n!}, \quad n \ge 0.$$

- In steady state, the number of customers in an $M/M/\infty$ station $\sim \text{Poisson}(\lambda/\mu)$.
- Hence, $L = \sum_{n=0}^{\infty} nP_n = \mathbb{E} \left[\text{Poisson RV with mean } \frac{\lambda}{\mu} \right] = \frac{\lambda}{\mu}$.

Theorem 6 (Limiting Distribution of $M/M/\infty$ Queue)

For an $M/M/\infty$ queue, its limiting (steady-state) distribution is given by

$$P_n = e^{-\lambda/\mu} \frac{(\lambda/\mu)^n}{n!}, \quad n \ge 0.$$

- In steady state, the number of customers in an $M/M/\infty$ station $\sim \text{Poisson}(\lambda/\mu)$.
- Hence, $L = \sum_{n=0}^{\infty} nP_n = \mathbb{E} \left[\text{Poisson RV with mean } \frac{\lambda}{\mu} \right] = \frac{\lambda}{\mu}$.

• Using Little's Law,
$$W = L/\lambda = \frac{1}{\mu}$$
.

Theorem 6 (Limiting Distribution of $M/M/\infty$ Queue)

For an $M/M/\infty$ queue, its limiting (steady-state) distribution is given by

$$P_n = e^{-\lambda/\mu} \frac{(\lambda/\mu)^n}{n!}, \quad n \ge 0.$$

- In steady state, the number of customers in an $M/M/\infty$ station $\sim \text{Poisson}(\lambda/\mu)$.
- Hence, $L = \sum_{n=0}^{\infty} nP_n = \mathbb{E} \left[\text{Poisson RV with mean } \frac{\lambda}{\mu} \right] = \frac{\lambda}{\mu}$.
- Using Little's Law, $W = L/\lambda = \frac{1}{\mu}$.

•
$$L_Q = 0, \ W_Q = 0.$$

SHEN Haihui

CC BY-SA

- M/M/1/K Queue[†]
 - Customers arrive according to a Poisson process with rate λ .
 - The service times are iid random variables with $\mathrm{Exp}(\mu)$ distribution.
 - The customers are served in an FCFS fashion by a *single* server.
 - The capacity is K, K ≥ 1, i.e., the maximal number of customers waiting in queue + customers in server ≤ K.
 - A customer who finds the station is full (K customers there) leaves immediately (lost).
 - The entering rate, denoted as λ_e , is smaller than the arrival rate $\lambda.$
 - It is always stable (due to the finite capacity).

M/M/1/K Queue \subset Birth and Death Process with Finite Capacity \subset Continuous-Time Markov Chain.⁶ Toron Units

- M/M/1/K Queue[†]
 - Customers arrive according to a Poisson process with rate λ .
 - The service times are iid random variables with $\mathrm{Exp}(\mu)$ distribution.
 - The customers are served in an FCFS fashion by a *single* server.
 - The capacity is K, K ≥ 1, i.e., the maximal number of customers waiting in queue + customers in server ≤ K.
 - A customer who finds the station is full (K customers there) leaves immediately (lost).
 - The entering rate, denoted as λ_e , is smaller than the arrival rate λ .
 - It is always stable (due to the finite capacity).
- In steady state

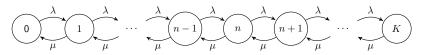
(cc) BY-SA

- $\mathbb{P}(\text{station is full}) = P_K$.
- Entering rate $\lambda_e = \lambda(1 P_K)$.

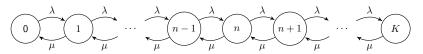
 $^{\dagger}M/M/1/K$ Queue \subset Birth and Death Process with Finite Capacity \subset Continuous-Time Markov Chain.¹⁰ Tong University

▶ M/M/1/K Queue

• The state space diagram is as follows:



• The state space diagram is as follows:



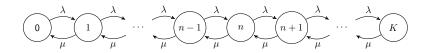
Theorem 7 (Limiting Distribution of M/M/1/K Queue)

For an M/M/1/K queue, its limiting (steady-state) distribution is given by

$$P_n = \begin{cases} \frac{(1-\rho)\rho^n}{1-\rho^{K+1}}, & \text{if } \rho \neq 1, \\ \frac{1}{K+1}, & \text{if } \rho = 1, \end{cases} \quad 0 \le n \le K,$$

where $\rho \coloneqq \lambda/\mu$. (ρ is NOT the server utilization!)

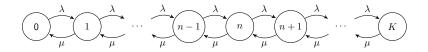
▶ M/M/1/K Queue



Proof.

CC BY-SA

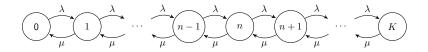
▶ M/M/1/K Queue



Proof. Due to Observations 1 & 2,

 $\begin{array}{cccc} \text{State} & \text{Rate Process Leaves} & \text{Rate Process Enters} \\ 0 & P_0\lambda & = & P_1\mu \\ n, \ 1 \leq n \leq K-1 & P_n(\mu+\lambda) & = & P_{n-1}\lambda + P_{n+1}\mu \\ K & P_K\mu & = & P_{K-1}\lambda \end{array}$

▶ M/M/1/K Queue



Proof. Due to Observations 1 & 2,

 $\begin{array}{cccc} \text{State} & \text{Rate Process Leaves} & \text{Rate Process Enters} \\ 0 & P_0\lambda & = & P_1\mu \\ n, \ 1 \leq n \leq K-1 & P_n(\mu+\lambda) & = & P_{n-1}\lambda + P_{n+1}\mu \\ K & P_K\mu & = & P_{K-1}\lambda \end{array}$

Rewriting these equations gives

$$P_0 \lambda = P_1 \mu,$$

$$P_n \lambda = P_{n+1} \mu + (P_{n-1}\lambda - P_n \mu), \quad 1 \le n \le K - 1,$$

$$P_K \mu = P_{K-1} \lambda.$$

▶ M/M/1/K Queue

Or, equivalently,

$$\begin{split} P_{0}\lambda &= P_{1}\mu, \\ P_{1}\lambda &= P_{2}\mu + (P_{0}\lambda - P_{1}\mu) = P_{2}\mu, \\ P_{2}\lambda &= P_{3}\mu + (P_{1}\lambda - P_{2}\mu) = P_{3}\mu, \\ P_{n}\lambda &= P_{n+1}\mu + (P_{n-1}\lambda - P_{n}\mu) = P_{n+1}\mu, \quad 1 \leq n \leq K-2, \\ P_{K-1}\lambda &= P_{K}\mu. \end{split}$$

▶ M/M/1/K Queue

Or, equivalently,

$$\begin{split} P_{0}\lambda &= P_{1}\mu, \\ P_{1}\lambda &= P_{2}\mu + (P_{0}\lambda - P_{1}\mu) = P_{2}\mu, \\ P_{2}\lambda &= P_{3}\mu + (P_{1}\lambda - P_{2}\mu) = P_{3}\mu, \\ P_{n}\lambda &= P_{n+1}\mu + (P_{n-1}\lambda - P_{n}\mu) = P_{n+1}\mu, \quad 1 \leq n \leq K-2, \\ P_{K-1}\lambda &= P_{K}\mu. \end{split}$$

Let $\rho\coloneqq\lambda/\mu,$ solving in terms of P_0 yields $P_1=P_0\rho,$

 $\blacktriangleright M/M/1/K$ Queue

Or, equivalently,

$$\begin{split} P_{0}\lambda &= P_{1}\mu, \\ P_{1}\lambda &= P_{2}\mu + (P_{0}\lambda - P_{1}\mu) = P_{2}\mu, \\ P_{2}\lambda &= P_{3}\mu + (P_{1}\lambda - P_{2}\mu) = P_{3}\mu, \\ P_{n}\lambda &= P_{n+1}\mu + (P_{n-1}\lambda - P_{n}\mu) = P_{n+1}\mu, \quad 1 \leq n \leq K-2, \\ P_{K-1}\lambda &= P_{K}\mu. \end{split}$$

Let $\rho\coloneqq\lambda/\mu,$ solving in terms of P_0 yields $P_1=P_0\rho,$ $P_2=P_1\rho=P_0\rho^2,$

 $\blacktriangleright M/M/1/K$ Queue

Or, equivalently,

$$\begin{split} P_{0}\lambda &= P_{1}\mu, \\ P_{1}\lambda &= P_{2}\mu + (P_{0}\lambda - P_{1}\mu) = P_{2}\mu, \\ P_{2}\lambda &= P_{3}\mu + (P_{1}\lambda - P_{2}\mu) = P_{3}\mu, \\ P_{n}\lambda &= P_{n+1}\mu + (P_{n-1}\lambda - P_{n}\mu) = P_{n+1}\mu, \quad 1 \leq n \leq K-2, \\ P_{K-1}\lambda &= P_{K}\mu. \end{split}$$

Let $\rho \coloneqq \lambda/\mu$, solving in terms of P_0 yields $P_1 = P_0 \rho$, $P_2 = P_1 \rho = P_0 \rho^2$, $P_n = P_{n-1} \rho = P_0 \rho^n$, $1 \le n \le K$.

 $\blacktriangleright M/M/1/K$ Queue

Or, equivalently,

$$\begin{split} P_{0}\lambda &= P_{1}\mu, \\ P_{1}\lambda &= P_{2}\mu + (P_{0}\lambda - P_{1}\mu) = P_{2}\mu, \\ P_{2}\lambda &= P_{3}\mu + (P_{1}\lambda - P_{2}\mu) = P_{3}\mu, \\ P_{n}\lambda &= P_{n+1}\mu + (P_{n-1}\lambda - P_{n}\mu) = P_{n+1}\mu, \quad 1 \leq n \leq K-2, \\ P_{K-1}\lambda &= P_{K}\mu. \end{split}$$

Let $\rho \coloneqq \lambda/\mu$, solving in terms of P_0 yields $\begin{array}{l}P_1 = P_0\rho,\\P_2 = P_1\rho = P_0\rho^2,\\P_n = P_{n-1}\rho = P_0\rho^n,\quad 1\leq n\leq K.\end{array}$ Since $1 = \sum_{n=0}^{K} P_n = P_0\sum_{n=0}^{K}\rho^n = \begin{cases} P_0\frac{1-\rho^{K+1}}{1-\rho}, & \text{if } \rho \neq 1,\\P_0(K+1), & \text{if } \rho = 1, \end{cases}$ we have,

 $\blacktriangleright M/M/1/K$ Queue

Or, equivalently,

$$\begin{split} P_{0}\lambda &= P_{1}\mu, \\ P_{1}\lambda &= P_{2}\mu + (P_{0}\lambda - P_{1}\mu) = P_{2}\mu, \\ P_{2}\lambda &= P_{3}\mu + (P_{1}\lambda - P_{2}\mu) = P_{3}\mu, \\ P_{n}\lambda &= P_{n+1}\mu + (P_{n-1}\lambda - P_{n}\mu) = P_{n+1}\mu, \quad 1 \leq n \leq K-2, \\ P_{K-1}\lambda &= P_{K}\mu. \end{split}$$

Let $\rho \coloneqq \lambda/\mu$, solving in terms of P_0 yields $P_1 = P_0 \rho$. $P_{2} = P_{1}\rho = P_{0}\rho^{2}$ $P_n = P_{n-1}\rho = P_0\rho^n, \quad 1 < n < K.$ Since $1 = \sum_{n=0}^{K} P_n = P_0 \sum_{n=0}^{K} \rho^n = \begin{cases} P_0 \frac{1-\rho^{K+1}}{1-\rho}, & \text{if } \rho \neq 1, \\ P_0(K+1), & \text{if } \rho = 1, \end{cases}$ we have, if $\rho \neq 1$, $P_0 = \frac{1-\rho}{1-\rho^{K+1}}$, and $P_n = \frac{(1-\rho)\rho^n}{1-\rho^{K+1}}$, $1 \le n \le K$;

 $\blacktriangleright M/M/1/K$ Queue

Or, equivalently,

$$\begin{split} P_{0}\lambda &= P_{1}\mu, \\ P_{1}\lambda &= P_{2}\mu + (P_{0}\lambda - P_{1}\mu) = P_{2}\mu, \\ P_{2}\lambda &= P_{3}\mu + (P_{1}\lambda - P_{2}\mu) = P_{3}\mu, \\ P_{n}\lambda &= P_{n+1}\mu + (P_{n-1}\lambda - P_{n}\mu) = P_{n+1}\mu, \quad 1 \leq n \leq K-2, \\ P_{K-1}\lambda &= P_{K}\mu. \end{split}$$

Let $\rho \coloneqq \lambda/\mu$, solving in terms of P_0 yields $P_1 = P_0 \rho$. $P_2 = P_1 \rho = P_0 \rho^2$ $P_n = P_{n-1}\rho = P_0\rho^n, \quad 1 < n < K.$ Since $1 = \sum_{n=0}^{K} P_n = P_0 \sum_{n=0}^{K} \rho^n = \begin{cases} P_0 \frac{1-\rho^{K+1}}{1-\rho}, & \text{if } \rho \neq 1, \\ P_0(K+1), & \text{if } \rho = 1, \end{cases}$ we have, if $\rho \neq 1$, $P_0 = \frac{1-\rho}{1-\rho^{K+1}}$, and $P_n = \frac{(1-\rho)\rho^n}{1-\rho^{K+1}}$, $1 \le n \le K$; $\text{if } \rho = 1, \quad P_0 = \frac{1}{K+1}, \quad \text{and} \quad P_n = \frac{1}{K+1}, \quad 1 \le n \le K. \quad \textcircled{\textcircled{}} \overset{\checkmark}{\Longrightarrow} \overset{\checkmark}{\longleftarrow} \overset{\checkmark}{\longrightarrow} \overset{\checkmark}{\to} \overset{}{\to} \overset{}{\to} \overset{\leftarrow}{\to} \overset{$ CC BY-SA SHEN Haihui MEM6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)

• If
$$\rho \neq 1$$
,
 $L = \sum_{n=0}^{K} nP_n$

CC BY-SA

• If
$$\rho \neq 1$$
,
 $L = \sum_{n=0}^{K} nP_n = \sum_{n=0}^{K} n \frac{(1-\rho)\rho^n}{1-\rho^{K+1}}$

▶ M/M/1/K Queue

• If
$$\rho \neq 1$$
,
 $L = \sum_{n=0}^{K} nP_n = \sum_{n=0}^{K} n \frac{(1-\rho)\rho^n}{1-\rho^{K+1}} = \frac{1-\rho}{1-\rho^{K+1}} \sum_{n=0}^{K} n\rho^n$

▶ M/M/1/K Queue

• If
$$\rho \neq 1$$
,
 $L = \sum_{n=0}^{K} nP_n = \sum_{n=0}^{K} n \frac{(1-\rho)\rho^n}{1-\rho^{K+1}} = \frac{1-\rho}{1-\rho^{K+1}} \sum_{n=0}^{K} n\rho^n$
 $= \frac{1-\rho}{1-\rho^{K+1}} \frac{\rho - (K+1)\rho^{K+1} + K\rho^{K+2}}{(1-\rho)^2}$

▶ M/M/1/K Queue

• If
$$\rho \neq 1$$
,

$$L = \sum_{n=0}^{K} nP_n = \sum_{n=0}^{K} n \frac{(1-\rho)\rho^n}{1-\rho^{K+1}} = \frac{1-\rho}{1-\rho^{K+1}} \sum_{n=0}^{K} n\rho^n$$

$$= \frac{1-\rho}{1-\rho^{K+1}} \frac{\rho^{-(K+1)\rho^{K+1}+K\rho^{K+2}}}{(1-\rho)^2} = \frac{\rho}{1-\rho} \frac{1-(K+1)\rho^{K}+K\rho^{K+1}}{1-\rho^{K+1}}.$$

▶ M/M/1/K Queue

• If
$$\rho \neq 1$$
,
 $L = \sum_{n=0}^{K} nP_n = \sum_{n=0}^{K} n \frac{(1-\rho)\rho^n}{1-\rho^{K+1}} = \frac{1-\rho}{1-\rho^{K+1}} \sum_{n=0}^{K} n\rho^n$
 $= \frac{1-\rho}{1-\rho^{K+1}} \frac{\rho^{-(K+1)\rho^{K+1}+K\rho^{K+2}}}{(1-\rho)^2} = \frac{\rho}{1-\rho} \frac{1-(K+1)\rho^{K}+K\rho^{K+1}}{1-\rho^{K+1}}.$

• If
$$\rho = 1$$
,
 $L = \sum_{n=0}^{K} nP_n = \sum_{n=0}^{K} n \frac{1}{K+1} = \frac{1}{K+1} \frac{(K+1)K}{2} = \frac{K}{2}.$

▶ M/M/1/K Queue

• If
$$\rho \neq 1$$
,

$$L = \sum_{n=0}^{K} nP_n = \sum_{n=0}^{K} n \frac{(1-\rho)\rho^n}{1-\rho^{K+1}} = \frac{1-\rho}{1-\rho^{K+1}} \sum_{n=0}^{K} n\rho^n$$

$$= \frac{1-\rho}{1-\rho^{K+1}} \frac{\rho-(K+1)\rho^{K+1}+K\rho^{K+2}}{(1-\rho)^2} = \frac{\rho}{1-\rho} \frac{1-(K+1)\rho^K+K\rho^{K+1}}{1-\rho^{K+1}}.$$

• If
$$\rho = 1$$
,
 $L = \sum_{n=0}^{K} nP_n = \sum_{n=0}^{K} n \frac{1}{K+1} = \frac{1}{K+1} \frac{(K+1)K}{2} = \frac{K}{2}.$

•
$$\mathbb{P}[\text{station is full}] = P_K$$
.

▶ M/M/1/K Queue

• If
$$\rho \neq 1$$
,

$$L = \sum_{n=0}^{K} nP_n = \sum_{n=0}^{K} n \frac{(1-\rho)\rho^n}{1-\rho^{K+1}} = \frac{1-\rho}{1-\rho^{K+1}} \sum_{n=0}^{K} n\rho^n$$

$$= \frac{1-\rho}{1-\rho^{K+1}} \frac{\rho-(K+1)\rho^{K+1}+K\rho^{K+2}}{(1-\rho)^2} = \frac{\rho}{1-\rho} \frac{1-(K+1)\rho^K+K\rho^{K+1}}{1-\rho^{K+1}}.$$

• If
$$\rho = 1$$
,
 $L = \sum_{n=0}^{K} nP_n = \sum_{n=0}^{K} n \frac{1}{K+1} = \frac{1}{K+1} \frac{(K+1)K}{2} = \frac{K}{2}.$

- $\mathbb{P}[\text{station is full}] = P_K$.
- Entering rate $\lambda_e = \lambda(1 P_K)$.

▶ M/M/1/K Queue

• If
$$\rho \neq 1$$
,

$$L = \sum_{n=0}^{K} nP_n = \sum_{n=0}^{K} n \frac{(1-\rho)\rho^n}{1-\rho^{K+1}} = \frac{1-\rho}{1-\rho^{K+1}} \sum_{n=0}^{K} n\rho^n$$

$$= \frac{1-\rho}{1-\rho^{K+1}} \frac{\rho^{-(K+1)\rho^{K+1}+K\rho^{K+2}}}{(1-\rho)^2} = \frac{\rho}{1-\rho} \frac{1-(K+1)\rho^{K}+K\rho^{K+1}}{1-\rho^{K+1}}.$$

• If
$$\rho = 1$$
,
 $L = \sum_{n=0}^{K} nP_n = \sum_{n=0}^{K} n \frac{1}{K+1} = \frac{1}{K+1} \frac{(K+1)K}{2} = \frac{K}{2}.$

• $\mathbb{P}[\text{station is full}] = P_K$.

- Entering rate $\lambda_e = \lambda(1 P_K)$.
- The server utilization = $\lambda_e/\mu = \rho(1 P_K)$.

▶ M/M/1/K Queue

• If
$$\rho \neq 1$$
,

$$L = \sum_{n=0}^{K} nP_n = \sum_{n=0}^{K} n \frac{(1-\rho)\rho^n}{1-\rho^{K+1}} = \frac{1-\rho}{1-\rho^{K+1}} \sum_{n=0}^{K} n\rho^n$$

$$= \frac{1-\rho}{1-\rho^{K+1}} \frac{\rho^{-(K+1)\rho^{K+1}+K\rho^{K+2}}}{(1-\rho)^2} = \frac{\rho}{1-\rho} \frac{1-(K+1)\rho^{K}+K\rho^{K+1}}{1-\rho^{K+1}}.$$

• If
$$\rho = 1$$
,
 $L = \sum_{n=0}^{K} nP_n = \sum_{n=0}^{K} n \frac{1}{K+1} = \frac{1}{K+1} \frac{(K+1)K}{2} = \frac{K}{2}.$

• $\mathbb{P}[\text{station is full}] = P_K$.

- Entering rate $\lambda_e = \lambda(1 P_K)$.
- The server utilization $= \lambda_e/\mu = \rho(1 P_K).$
- As $\rho \to \infty$, $L \to K$, $1 P_K \to 0$, $\rho(1 P_K) \to 1$.

- For those entered the station
 - The expected sojourn time $W = L/\lambda_e = \frac{L}{\lambda(1-P_K)}$.
 - The expected waiting time $W_Q = W \frac{1}{\mu} = \frac{L}{\lambda(1-P_K)} \frac{1}{\mu}$.

 $\blacktriangleright M/M/1/K$ Queue

- For those entered the station
 - The expected sojourn time $W = L/\lambda_e = \frac{L}{\lambda(1-P_K)}$.
 - The expected waiting time $W_Q = W \frac{1}{\mu} = \frac{L}{\lambda(1-P_K)} \frac{1}{\mu}$.
- For ALL the arrivals (those who are lost have 0 sojourn time and waiting time)
 - The expected sojourn time $W' = (1 P_K)W + 0 = \frac{L}{\lambda}$.
 - The expected waiting time $W'_Q = (1 P_K)W_Q + 0 = \frac{L}{\lambda} \frac{1 P_K}{\mu}$.

 $\blacktriangleright M/M/1/K$ Queue

- For those entered the station
 - The expected sojourn time $W = L/\lambda_e = \frac{L}{\lambda(1-P_K)}$.
 - The expected waiting time $W_Q = W \frac{1}{\mu} = \frac{L}{\lambda(1-P_K)} \frac{1}{\mu}$.
- For ALL the arrivals (those who are lost have 0 sojourn time and waiting time)
 - The expected sojourn time $W' = (1 P_K)W + 0 = \frac{L}{\lambda}$.
 - The expected waiting time $W'_Q = (1 P_K)W_Q + 0 = \frac{L}{\lambda} \frac{1 P_K}{\mu}$.
- The expected queue length $L_Q=\lambda_e W_Q=L-\rho(1-P_K),$ or, $=\lambda W_Q'=L-\rho(1-P_K).$

50 / 64

 $\blacktriangleright M/M/1/K$ Queue

- For those entered the station
 - The expected sojourn time $W = L/\lambda_e = \frac{L}{\lambda(1-P_K)}$.
 - The expected waiting time $W_Q = W \frac{1}{\mu} = \frac{L}{\lambda(1-P_K)} \frac{1}{\mu}$.
- For ALL the arrivals (those who are lost have 0 sojourn time and waiting time)
 - The expected sojourn time $W' = (1 P_K)W + 0 = \frac{L}{\lambda}$.
 - The expected waiting time $W'_Q = (1 P_K)W_Q + 0 = \frac{L}{\lambda} \frac{1 P_K}{\mu}$.
- The expected queue length $L_Q=\lambda_e W_Q=L-\rho(1-P_K),$ or, $=\lambda W_Q'=L-\rho(1-P_K).$
- As $\rho \to \infty$, $1 P_K \to 0$, $\rho(1 P_K) \to 1$, $L \to K$, $L_Q \to K 1$.

 $\blacktriangleright M/M/1/K$ Queue

- For those entered the station
 - The expected sojourn time $W = L/\lambda_e = \frac{L}{\lambda(1-P_K)}$.
 - The expected waiting time $W_Q = W \frac{1}{\mu} = \frac{L}{\lambda(1-P_K)} \frac{1}{\mu}$.
- For ALL the arrivals (those who are lost have 0 sojourn time and waiting time)
 - The expected sojourn time $W' = (1 P_K)W + 0 = \frac{L}{\lambda}$.
 - The expected waiting time $W'_Q = (1 P_K)W_Q + 0 = \frac{L}{\lambda} \frac{1 P_K}{\mu}$.
- The expected queue length $L_Q=\lambda_e W_Q=L-\rho(1-P_K),$ or, $=\lambda W_Q'=L-\rho(1-P_K).$
- As $\rho \to \infty$, $1 P_K \to 0$, $\rho(1 P_K) \to 1$, $L \to K$, $L_Q \to K 1$.

• If
$$\mu$$
 is fixed and $\lambda \to \infty$:
 $\lambda(1 - P_K) \to \mu, W \to \frac{K}{\mu}, W_Q \to \frac{K-1}{\mu}, W' \to 0, W'_Q \to 0.$

 $\blacktriangleright M/M/1/K$ Queue

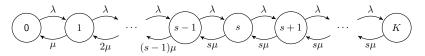
- For those entered the station
 - The expected sojourn time $W = L/\lambda_e = \frac{L}{\lambda(1-P_K)}$.
 - The expected waiting time $W_Q = W \frac{1}{\mu} = \frac{L}{\lambda(1-P_K)} \frac{1}{\mu}$.
- For ALL the arrivals (those who are lost have 0 sojourn time and waiting time)
 - The expected sojourn time $W' = (1 P_K)W + 0 = \frac{L}{\lambda}$.
 - The expected waiting time $W'_Q = (1 P_K)W_Q + 0 = \frac{L}{\lambda} \frac{1 P_K}{\mu}$.
- The expected queue length $L_Q=\lambda_e W_Q=L-\rho(1-P_K),$ or, $=\lambda W_Q'=L-\rho(1-P_K).$
- As $\rho \to \infty$, $1 P_K \to 0$, $\rho(1 P_K) \to 1$, $L \to K$, $L_Q \to K 1$.

• If
$$\mu$$
 is fixed and $\lambda \to \infty$:
 $\lambda(1-P_K) \to \mu, W \to \frac{K}{\mu}, W_Q \to \frac{K-1}{\mu}, W' \to 0, W'_Q \to 0.$

• If
$$\lambda$$
 is fixed and $\mu \to 0$:
 $\frac{1}{\mu}(1-P_K) \to \frac{1}{\lambda}, W \to \infty, W_Q \to \infty, W' \to \frac{K}{\lambda}, W'_Q \to \frac{K-1}{\lambda}.$

 $\blacktriangleright M/M/1/K$ Queue

- M/M/s/K queue[†] is a generalized version of M/M/1/K queue. $(K \ge s)$
- The state space diagram is as follows:



- Let s = 1, it becomes the M/M/1/K queue.
- Let s = K, it becomes the M/M/K/K queue.
- There is no $M/M/\infty/K$ queue!

 $^{\dagger}M/M/1/K$ Queue $\subset M/M/s/K$ Queue \subset Birth and Death Process with Finite Capacity \subset CTMC.⁴⁴ Into Tong Unit

▶ M/M/s/K Queue

Theorem 8 (Limiting Distribution of M/M/s/K Queue)

For an M/M/s/K queue, its limiting (steady-state) distribution is given by

$$P_n = \left[\sum_{i=0}^s \frac{1}{i!} \left(\frac{\lambda}{\mu}\right)^i + \varrho\right]^{-1} \rho_n , \quad 0 \le n \le K,$$

where $\rho\coloneqq\lambda/(s\mu),$ (ρ is NOT the server utilization!) and

$$:= \begin{cases} \frac{s^s}{s!} \frac{\rho^{s+1}(1-\rho^{K-s})}{1-\rho}, & \text{if } \rho \neq 1, \\ \frac{s^s}{s!}(K-s), & \text{if } \rho = 1, \end{cases}$$

and

0

$$\rho_n \coloneqq \begin{cases} \frac{1}{n!} \left(\frac{\lambda}{\mu}\right)^n, & \text{ if } 0 \le n \le s, \\ \frac{s^s}{s!} \rho^n, & \text{ if } s+1 \le n \le K, \ K \ge s+1. \end{cases}$$

▶ M/M/s/K Queue

Theorem 8 (Limiting Distribution of M/M/s/K Queue)

For an M/M/s/K queue, its limiting (steady-state) distribution is given by

$$P_n = \left[\sum_{i=0}^s \frac{1}{i!} \left(\frac{\lambda}{\mu}\right)^i + \varrho\right]^{-1} \rho_n , \quad 0 \le n \le K,$$

where $\rho\coloneqq\lambda/(s\mu)\text{, }(\rho\text{ is NOT the server utilization!})$ and

$$:= \begin{cases} \frac{s^{s}}{s!} \frac{\rho^{s+1}(1-\rho^{K-s})}{1-\rho}, & \text{if } \rho \neq 1, \\ \frac{s^{s}}{s!}(K-s), & \text{if } \rho = 1, \end{cases}$$

and

0

$$\rho_n \coloneqq \begin{cases} \frac{1}{n!} \left(\frac{\lambda}{\mu}\right)^n, & \text{ if } 0 \le n \le s, \\ \frac{s^s}{s!} \rho^n, & \text{ if } s+1 \le n \le K, \ K \ge s+1. \end{cases}$$

• The server utilization $= \lambda_e/(s\mu) = \rho(1 - P_K).$

Single-Station Queues

► M/G/1 Queue

- M/G/1 Queue[†]
 - Customers arrive according to a Poisson process with rate λ .
 - The service times are iid random variables with **arbitrary** distribution (mean: $\frac{1}{u}$, variance: σ^2).
 - The customers are served in an FCFS fashion by a *single* server.
 - The capacity is unlimited, i.e., waiting space is unlimited.
 - M/G/1 queue is stable if and only if $\lambda < \mu$.

 $^{\dagger}M/G/1$ queue has an embedded discrete-time Markov chain.

Single-Station Queues

 $\blacktriangleright M/G/1$ Queue

- M/G/1 Queue[†]
 - Customers arrive according to a Poisson process with rate λ .
 - The service times are iid random variables with **arbitrary** distribution (mean: $\frac{1}{u}$, variance: σ^2).
 - The customers are served in an FCFS fashion by a *single* server.
 - The capacity is unlimited, i.e., waiting space is unlimited.
 - M/G/1 queue is stable if and only if $\lambda < \mu$.

 $^{\dagger}M/G/1$ queue has an embedded discrete-time Markov chain.

Single-Station Queues

 $\blacktriangleright M/G/1$ Queue

- M/G/1 Queue[†]
 - Customers arrive according to a Poisson process with rate λ .
 - The service times are iid random variables with **arbitrary** distribution (mean: $\frac{1}{u}$, variance: σ^2).
 - The customers are served in an FCFS fashion by a *single* server.
 - The capacity is unlimited, i.e., waiting space is unlimited.
 - M/G/1 queue is stable if and only if $\lambda < \mu$.

• For $M/G/\infty$, the measures are the same as those in $M/M/\infty$.

 $^{^{\}dagger}M/G/1$ queue has an embedded discrete-time Markov chain.

Queueing Systems and Models

- ► Introduction
- Characteristics & Terminology
- Kendall Notation

2 Poisson Process

- ► Definition
- Properties

3 Single-Station Queues

- Notations
- ▶ General Results
- ▶ Little's Law
- ▶ M/M/1 Queue
- ▶ M/M/s Queue
- ▶ $M/M/\infty$ Queue
- $\blacktriangleright M/M/1/K$ Queue
- $\blacktriangleright M/M/s/K$ Queue
- ▶ M/G/1 Queue

Queueing Networks

Jackson Networks

CC BY-SA

- Queueing Network (multiple-station queueing system)
 - Customers can move from one station to another (for different service), before leaving the system.

- Queueing Network (multiple-station queueing system)
 - Customers can move from one station to another (for different service), before leaving the system.

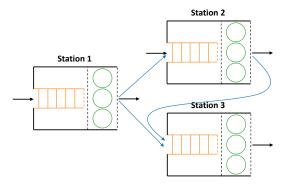


Figure: Illustration of Queueing Networks

- Jackson Queueing Network (first identified by Jackson (1963))[†]
 - **1** The network has J single-station queues.
 - 2 The *j*th station has s_j servers and a *single* queue.
 - Othere is unlimited waiting space at each station (infinite capacity).
 - **4** Customers arrive at station j from outside according to a Poisson process with rate λ_j ; all arrival processes are independent of each other.
 - The service times at station j are iid random variables with Exp(µ_j) distribution.

[†]Jackson network is an *J*-dimensional continuous-time Markov chain.

- Jackson Queueing Network (first identified by Jackson (1963))[†]
 - **1** The network has J single-station queues.
 - 2 The *j*th station has s_j servers and a *single* queue.
 - Othere is unlimited waiting space at each station (infinite capacity).
 - **4** Customers arrive at station j from outside according to a Poisson process with rate λ_j ; all arrival processes are independent of each other.
 - The service times at station j are iid random variables with Exp(µ_j) distribution.
 - **(**) Customers finishing service at station i join the queue (if any) at station j with **routing probability** p_{ij} , or leave the network with probability p_{i0} , independently of each other.

上海交通大学 SHANGHAI JIAO TONG UNIVERSIT

[†]Jackson network is an *J*-dimensional continuous-time Markov chain.

- Jackson Queueing Network (first identified by Jackson (1963))[†]
 - **1** The network has J single-station queues.
 - 2 The *j*th station has s_j servers and a *single* queue.
 - Othere is unlimited waiting space at each station (infinite capacity).
 - **4** Customers arrive at station j from outside according to a Poisson process with rate λ_j ; all arrival processes are independent of each other.
 - The service times at station j are iid random variables with Exp(µ_j) distribution.
 - **(**) Customers finishing service at station i join the queue (if any) at station j with **routing probability** p_{ij} , or leave the network with probability p_{i0} , independently of each other.
 - A customer finishing service may be routed to the same station (i.e., re-enter).

[†]Jackson network is an *J*-dimensional continuous-time Markov chain.

• The routing probabilities p_{ij} can be put in a matrix form as follows:

$$\boldsymbol{P} := \begin{bmatrix} p_{11} & p_{12} & p_{13} & \cdots & p_{1J} \\ p_{21} & p_{22} & p_{23} & \cdots & p_{2J} \\ p_{31} & p_{32} & p_{33} & \cdots & p_{3J} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ p_{J1} & p_{J2} & p_{J3} & \cdots & p_{JJ} \end{bmatrix}$$

• The matrix **P** is called the **routing matrix**.

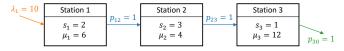
• The routing probabilities p_{ij} can be put in a matrix form as follows:

$$\boldsymbol{P} := \begin{bmatrix} p_{11} & p_{12} & p_{13} & \cdots & p_{1J} \\ p_{21} & p_{22} & p_{23} & \cdots & p_{2J} \\ p_{31} & p_{32} & p_{33} & \cdots & p_{3J} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ p_{J1} & p_{J2} & p_{J3} & \cdots & p_{JJ} \end{bmatrix}$$

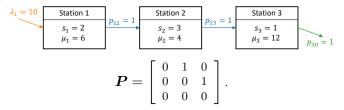
- The matrix **P** is called the **routing matrix**.
- Since a customer leaving station *i* either joints some other station, or leaves, we must have

$$\sum_{j=1}^{J} p_{ij} + p_{i0} = 1, \quad 1 \le i \le J.$$

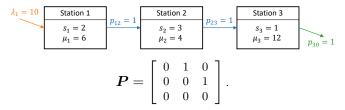
• Example 1: Tandem Queue



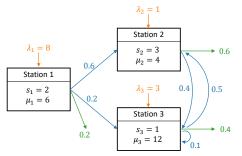
• Example 1: Tandem Queue



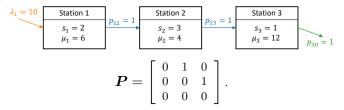
• Example 1: Tandem Queue



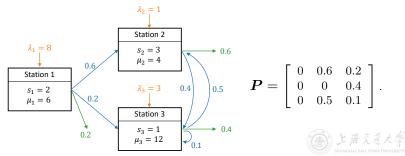
• Example 2: General Network



• Example 1: Tandem Queue



• Example 2: General Network



- Recall that customers arrive at station j from outside with rate λ_j .
- Let b_j be the rate of internal arrivals to station j.
- Then the total arrival rate to station j, denoted as a_j, is given by
 a_i = λ_i + b_i, 1 ≤ j ≤ J.

Jackson Networks

- Recall that customers arrive at station j from outside with rate λ_j .
- Let b_j be the rate of internal arrivals to station j.
- Then the total arrival rate to station j, denoted as a_j , is given by

$$a_j = \lambda_j + b_j, \quad 1 \le j \le J.$$

- If the stations are all stable
 - The departure rate of customers from station i will be the same as the total arrival rate to station i, namely, a_i .
 - The arrival rate of internal customers from station i to station j is $a_i p_{ij}$.

59 / 64

Jackson Networks

- Recall that customers arrive at station j from outside with rate λ_j .
- Let b_j be the rate of internal arrivals to station j.
- Then the total arrival rate to station j, denoted as a_j, is given by

$$a_j = \lambda_j + b_j, \quad 1 \le j \le J$$

- If the stations are all stable
 - The departure rate of customers from station *i* will be the same as the total arrival rate to station *i*, namely, *a_i*.
 - The arrival rate of internal customers from station *i* to station *j* is $a_i p_{ij}$.

• Hence,
$$b_j = \sum_{i=1}^J a_i p_{ij}$$
, $1 \le j \le J$.

Jackson Networks

- Recall that customers arrive at station j from outside with rate λ_i .
- Let b_i be the rate of internal arrivals to station j.
- Then the total arrival rate to station j, denoted as a_j , is given by

$$a_j = \lambda_j + b_j, \quad 1 \le j \le J$$

- If the stations are all stable
 - The departure rate of customers from station *i* will be the same as the total arrival rate to station i, namely, a_i .
 - The arrival rate of internal customers from station i to station j is $a_i p_{ij}$.
- Hence, $b_i = \sum_{i=1}^J a_i p_{ij}, \quad 1 \le j \le J.$
- Substituting in the pervious equation, we get the traffic equations: $a_i = \lambda_i + \sum_{i=1}^J a_i p_{ij}, \quad 1 \le j \le J.$

• Let $\boldsymbol{a}^{\mathsf{T}} = [a_1 \ a_2 \ \cdots \ a_J]$ and $\boldsymbol{\lambda}^{\mathsf{T}} = [\lambda_1 \ \lambda_2 \ \cdots \ \lambda_J]$, the traffic equations can be written in matrix form as

$$oldsymbol{a}^{\intercal} = oldsymbol{\lambda}^{\intercal} + oldsymbol{a}^{\intercal}oldsymbol{P}$$
 ,

or

$$oldsymbol{a}^{\intercal}(oldsymbol{I}-oldsymbol{P})=oldsymbol{\lambda}^{\intercal}$$
 ,

where I is the $J \times J$ identity matrix.

• Let $\boldsymbol{a}^{\mathsf{T}} = [a_1 \ a_2 \ \cdots \ a_J]$ and $\boldsymbol{\lambda}^{\mathsf{T}} = [\lambda_1 \ \lambda_2 \ \cdots \ \lambda_J]$, the traffic equations can be written in matrix form as

$$oldsymbol{a}^{\intercal} = oldsymbol{\lambda}^{\intercal} + oldsymbol{a}^{\intercal}oldsymbol{P}$$
 ,

or

$$oldsymbol{a}^{\intercal}(oldsymbol{I}-oldsymbol{P})=oldsymbol{\lambda}^{\intercal}$$
 ,

where I is the $J \times J$ identity matrix.

• Suppose the matrix I - P is invertible, the above equation has a unique solution given by

$$\boldsymbol{a}^{\mathsf{T}} = \boldsymbol{\lambda}^{\mathsf{T}} (\boldsymbol{I} - \boldsymbol{P})^{-1}.$$

• Let $\boldsymbol{a}^{\mathsf{T}} = [a_1 \ a_2 \ \cdots \ a_J]$ and $\boldsymbol{\lambda}^{\mathsf{T}} = [\lambda_1 \ \lambda_2 \ \cdots \ \lambda_J]$, the traffic equations can be written in matrix form as

$$oldsymbol{a}^{\intercal} = oldsymbol{\lambda}^{\intercal} + oldsymbol{a}^{\intercal}oldsymbol{P}$$
 ,

or

$$oldsymbol{a}^{\intercal}(oldsymbol{I}-oldsymbol{P})=oldsymbol{\lambda}^{\intercal}$$
 ,

where I is the $J \times J$ identity matrix.

• Suppose the matrix I - P is invertible, the above equation has a unique solution given by

$$\boldsymbol{a}^{\mathsf{T}} = \boldsymbol{\lambda}^{\mathsf{T}} (\boldsymbol{I} - \boldsymbol{P})^{-1}.$$

• The next theorem states the stability condition for Jackson networks in terms of the above solution.

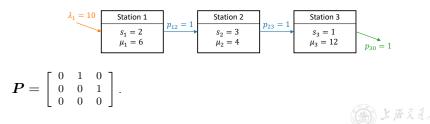
Theorem 9 (Stability of Jackson Networks)

A Jackson network with external arrival rate vector λ and routing matrix P is stable if: (1) I - P is invertible; and (2) $a_i < s_i \mu_i$ for all i = 1, 2, ..., J, where a_i is given by the traffic equations.

Theorem 9 (Stability of Jackson Networks)

A Jackson network with external arrival rate vector λ and routing matrix P is stable if: (1) I - P is invertible; and (2) $a_i < s_i \mu_i$ for all i = 1, 2, ..., J, where a_i is given by the traffic equations.

Example 1: Tandem Queue



Theorem 9 (Stability of Jackson Networks)

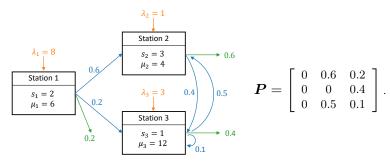
A Jackson network with external arrival rate vector λ and routing matrix P is stable if: (1) I - P is invertible; and (2) $a_i < s_i \mu_i$ for all i = 1, 2, ..., J, where a_i is given by the traffic equations.

• Example 1: Tandem Queue

$$\boldsymbol{P} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \cdot \boldsymbol{\lambda} = \begin{bmatrix} 10 \\ 0 \\ 0 \end{bmatrix}, \quad \boldsymbol{a}^{\mathsf{T}} = \boldsymbol{\lambda}^{\mathsf{T}} (\boldsymbol{I} - \boldsymbol{P})^{-1} = [10 \ 10 \ 10].$$

Stable.

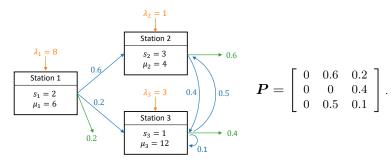
• Example 2: General Network



Examples

CC BY-SA

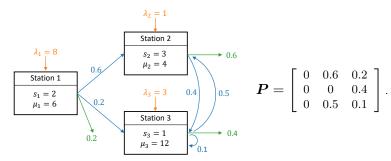
• Example 2: General Network



$$\boldsymbol{\lambda} = \begin{bmatrix} 8\\1\\3 \end{bmatrix}$$
, $\boldsymbol{a}^{\mathsf{T}} = \boldsymbol{\lambda}^{\mathsf{T}} (\boldsymbol{I} - \boldsymbol{P})^{-1} = [8\ 10.7\ 9.9] \Rightarrow \mathsf{Stable}.$

Examples

• Example 2: General Network



$$\boldsymbol{\lambda} = \begin{bmatrix} 8\\1\\3 \end{bmatrix}$$
, $\boldsymbol{a}^{\mathsf{T}} = \boldsymbol{\lambda}^{\mathsf{T}} (\boldsymbol{I} - \boldsymbol{P})^{-1} = [8\ 10.7\ 9.9] \Rightarrow \mathsf{Stable}.$

If λ_2 is increased to 4,

$$\boldsymbol{\lambda} = \begin{bmatrix} 8\\ 4\\ 3 \end{bmatrix}, \quad \boldsymbol{a}^{\mathsf{T}} = \boldsymbol{\lambda}^{\mathsf{T}} (\boldsymbol{I} - \boldsymbol{P})^{-1} = [8 \ 14.6 \ 11.6] \Rightarrow \mathsf{Unstable.}$$

CC BY-SA

Examples

• Let $L_j(t)$ be the number of customers in the jth station in a Jackson network at time t.

- Let $L_j(t)$ be the number of customers in the jth station in a Jackson network at time t.
- Then the state of the network at time t is given by $[L_1(t), L_2(t), \ldots, L_J(t)].$

- Let $L_j(t)$ be the number of customers in the jth station in a Jackson network at time t.
- Then the state of the network at time t is given by $[L_1(t), L_2(t), \ldots, L_J(t)].$
- When the Jackson network is stable, the limiting distribution of the sate of the network is

$$P(n_1, n_2, \dots, n_J) = \lim_{t \to \infty} \mathbb{P}\{L_1(t) = n_1, L_2(t) = n_2, \dots, L_J(t) = n_J\}.$$

- Let $L_j(t)$ be the number of customers in the jth station in a Jackson network at time t.
- Then the state of the network at time t is given by $[L_1(t), L_2(t), \ldots, L_J(t)].$
- When the Jackson network is stable, the limiting distribution of the sate of the network is

$$P(n_1, n_2, \dots, n_J) = \lim_{t \to \infty} \mathbb{P}\{L_1(t) = n_1, L_2(t) = n_2, \dots, L_J(t) = n_J\}.$$

• It is a joint probability.

Theorem 10 (Limiting Distribution of Jackson Network)

For a stable Jackson network, its limiting (steady-state) distribution is given by

$$P(n_1, n_2, \dots, n_J) = P_1(n_1)P_2(n_2)\cdots P_J(n_J),$$

for $n_j = 0, 1, 2, ...$ and j = 1, 2, ..., J, where $P_j(n)$ is the limiting probability that there are n customers in an $M/M/s_j$ queue with arrival rate a_j and service rate μ_j .

Theorem 10 (Limiting Distribution of Jackson Network)

For a stable Jackson network, its limiting (steady-state) distribution is given by

$$P(n_1, n_2, \dots, n_J) = P_1(n_1)P_2(n_2)\cdots P_J(n_J),$$

for $n_j = 0, 1, 2, ...$ and j = 1, 2, ..., J, where $P_j(n)$ is the limiting probability that there are n customers in an $M/M/s_j$ queue with arrival rate a_j and service rate μ_j .

The limiting joint distribution of [L₁(t),...,L_J(t)] is a product of the limiting marginal distribution of L_j(t), j = 1,...,J.
 ⇒ Limiting behavior of all stations are independent of each other.

Theorem 10 (Limiting Distribution of Jackson Network)

For a stable Jackson network, its limiting (steady-state) distribution is given by

$$P(n_1, n_2, \dots, n_J) = P_1(n_1)P_2(n_2)\cdots P_J(n_J),$$

for $n_j = 0, 1, 2, ...$ and j = 1, 2, ..., J, where $P_j(n)$ is the limiting probability that there are n customers in an $M/M/s_j$ queue with arrival rate a_j and service rate μ_j .

- The limiting joint distribution of [L₁(t),...,L_J(t)] is a product of the limiting marginal distribution of L_j(t), j = 1,...,J.
 ⇒ Limiting behavior of all stations are independent of each other.
- The limiting distribution of station j is the same as that in an **isolated** $M/M/s_j$ queue with arrival rate a_j and service rate μ_j . $(a_j$'s are solved from the **traffic equations**.)