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Queueing Systems and Models » Introduction

e Queues (or waiting lines) are EVERYWHERE!
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Queueing Systems and Models » Introduction

e Queues (or waiting lines) are EVERYWHERE!

¢ Queues are an unavoidable component of modern life.
e E.g., in hospital, stores, bank, call center (online service), etc.
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Queueing Systems and Models » Introduction

Figure: Queues in Hospital
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Queueing Systems and Models » Introduction

Figure: Queues in Store (from The Sun)
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» Introduction

Figure: Queues in Campus (for COVID-19 Nucleic Acid Test)
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Queueing Systems and Models » Introduction

Figure: Queues in Bank
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Queueing Systems and Models » Introduction

Figu re: Queues in Bank (No requirement to stand physically in queues)
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Queueing Systems and Models
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Figure: Queue in Online Service
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Queueing Systems and Models » Introduction

e Queues (or waiting lines) are EVERYWHERE!

¢ Queues are an unavoidable component of modern life.
e E.g., in hospital, stores, bank, call center (online service), etc.
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Queueing Systems and Models » Introduction

e Queues (or waiting lines) are EVERYWHERE!

e Queues are an unavoidable component of modern life.
e E.g., in hospital, stores, bank, call center (online service), etc.
e Although we don’t like standing in a queue, we appreciate the
fairness that it imposes.
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Queueing Systems and Models » Introduction

e Queues (or waiting lines) are EVERYWHERE!

¢ Queues are an unavoidable component of modern life.

e E.g., in hospital, stores, bank, call center (online service), etc.
e Although we don’t like standing in a queue, we appreciate the
fairness that it imposes.

e Queues are not just for humans, however.
e E.g., email system, printer, manufacturing line, etc.
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Queueing Systems and Models » Introduction
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s and Models » Introduction

Figure: Queues (Inventories) in Manufacturing Line (from Estes)
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Queueing Systems and Models » Introduction

e Queues (or waiting lines) are EVERYWHERE!

¢ Queues are an unavoidable component of modern life.

e E.g., in hospital, stores, bank, call center (online service), etc.
e Although we don’t like standing in a queue, we appreciate the
fairness that it imposes.

e Queues are not just for humans, however.
e E.g., email system, printer, manufacturing line, etc.
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Queueing Systems and Models » Introduction

e Queues (or waiting lines) are EVERYWHERE!

¢ Queues are an unavoidable component of modern life.
e E.g., in hospital, stores, bank, call center (online service), etc.
e Although we don't like standing in a queue, we appreciate the
fairness that it imposes.

e Queues are not just for humans, however.
e E.g., email system, printer, manufacturing line, etc.
e Manufacturing systems maintain queues (called inventories) of
raw materials, partly finished goods, and finished goods via the
manufacturing process.
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Queueing Systems and Models » Introduction

e Typically, a queueing system consists of a stream of
“customers” (humans, goods, messages) that
e arrive at a service facility;
e wait in the queue according to certain discipline;
e get served;
e finally depart.
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Queueing Systems and Models » Introduction

e Typically, a queueing system consists of a stream of
“customers” (humans, goods, messages) that
e arrive at a service facility;
e wait in the queue according to certain discipline;
e get served;
e finally depart.

e A lot of real-world systems can be viewed as queueing
systems, e.g.,
* service facilities
e production systems
e repair and maintenance facilities
e communications and computer systems
e transport and material-handling systems, etc.
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Queueing Systems and Models » Introduction

e Typically, a queueing system consists of a stream of
“customers” (humans, goods, messages) that
e arrive at a service facility;
e wait in the queue according to certain discipline;
e get served;
e finally depart.

e A lot of real-world systems can be viewed as queueing
systems, e.g.,
* service facilities
e production systems
e repair and maintenance facilities
e communications and computer systems
e transport and material-handling systems, etc.

e Queueing models are mathematical representation of queueing
systems.
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Queueing Systems and Models » Introduction

¢ Queueing models may be
e analytically solved using queueing theory when they are simple
(highly simplified); or
e analyzed through simulation when they are complex (more
realistic).
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Queueing Systems and Models » Introduction

e Queueing models may be
e analytically solved using queueing theory when they are simple
(highly simplified); or
e analyzed through simulation when they are complex (more
realistic).

e Studied in either way, queueing models provide us a powerful
tool for designing and evaluating the performance of queueing
systems.
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Queueing Systems and Models » Introduction

e Queueing models may be
e analytically solved using queueing theory when they are simple
(highly simplified); or
e analyzed through simulation when they are complex (more
realistic).

e Studied in either way, queueing models provide us a powerful
tool for designing and evaluating the performance of queueing
systems.

e They help us do this by answering the following questions
(and many others):
@ How many customers are there in the queue (or station) on
average?
® How long does a typical customer spend in the queue (or
station) on average?
® How busy are the servers on average?
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Queueing Systems and Models » Introduction

e Simple queueing models solved analytically:

e Get rough estimates of system performance with negligible
time and expense.

e More importantly, understand the dynamic behavior of the
queueing systems and the relationships between various
performance measures.

e Provide a way to verify that the simulation model has been
programmed correctly.
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Queueing Systems and Models » Introduction

e Simple queueing models solved analytically:

e Get rough estimates of system performance with negligible
time and expense.

e More importantly, understand the dynamic behavior of the
queueing systems and the relationships between various
performance measures.

e Provide a way to verify that the simulation model has been
programmed correctly.

o Complex queueing models analyzed through simulation:

o Allow us to incorporate arbitrarily fine details of the system
into the model.

e Estimate virtually any performance measure of interest with
high accuracy.
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Queueing Systems and Models » Introduction

e Simple queueing models solved analytically:
e Get rough estimates of system performance with negligible
time and expense.
e More importantly, understand the dynamic behavior of the
queueing systems and the relationships between various
performance measures.

e Provide a way to verify that the simulation model has been
programmed correctly.

o Complex queueing models analyzed through simulation:

o Allow us to incorporate arbitrarily fine details of the system
into the model.

o Estimate virtually any performance measure of interest with
high accuracy.

e This lecture focuses on the classical analytically solvable
queueing models.
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Queueing Systems and Models » Characteristics & Terminology

e The key elements of a queueing system are the customers
and servers.

e The term customer can refer to anything that arrives and
requires service.

e The term server can refer to any resource that provides the
requested service.
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Queueing Systems and Models » Characteristics & Terminology

e The key elements of a queueing system are the customers
and servers.

e The term customer can refer to anything that arrives and
requires service.

e The term server can refer to any resource that provides the
requested service.

e The term station means the entire or part of the system,
which contains all the identical servers and the queue.
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Queueing Systems and Models » Characteristics & Terminology

e The key elements of a queueing system are the customers
and servers.

e The term customer can refer to anything that arrives and
requires service.

e The term server can refer to any resource that provides the
requested service.

e The term station means the entire or part of the system,
which contains all the identical servers and the queue.

e Suppose that there is only one queue in one station.
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Queueing Systems and Models » Characteristics & Terminology

The key elements of a queueing system are the customers
and servers.

e The term customer can refer to anything that arrives and
requires service.

e The term server can refer to any resource that provides the
requested service.

e The term station means the entire or part of the system,
which contains all the identical servers and the queue.

e Suppose that there is only one queue in one station.

e Capacity is the maximal number of customers allowed in the
station.

e Number waiting in queue 4+ number having service.
e Finite or infinite.
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Queueing Systems and Models » Characteristics & Terminology

e Single-station queueing system.
e Customers simply leave after service.
e E.g., customers arrive to buy coffee and then leave.

Station

Queue

Arrival Departure

—_
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Queueing Systems and Models » Characteristics & Terminology

e Single-station queueing system.
e Customers simply leave after service.
e E.g., customers arrive to buy coffee and then leave.

e Multiple-station queueing system (queueing network).
o Customers can move from one station to another (for different
service), before leaving the system.
e E.g., patients wait and get service at several different units
inside a hospital.

Station 2

Station

Station 1

Queue

Arrival

Departure
— —_—

SO0
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Queueing Systems and Models » Characteristics & Terminology

e The arrival process describes how the customers come.

e Arrivals may occur at scheduled times or random times.

e When at random times, the interarrival times are usually
characterized by a probability distribution.

o Customers may arrive one at a time or in batch (with constant
or random batch size).

¢ Different types of customers.
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Queueing Systems and Models » Characteristics & Terminology

e The arrival process describes how the customers come.

e Arrivals may occur at scheduled times or random times.

e When at random times, the interarrival times are usually
characterized by a probability distribution.

o Customers may arrive one at a time or in batch (with constant
or random batch size).

¢ Different types of customers.

e An customer arriving at a station:

o if the station capacity is full:
- the external arrival will leave immediately (called lost);
- the internal arrival may wait in the previous station (may

block the previous server).

e if the station capacity is not full, enter the station:
- if there is idle server in the station, get service immediately;
- if all servers are busy, wait in the queue.
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Queueing Systems and Models » Characteristics & Terminology

e Queue discipline: Which customer to serve first.
e First-in-first-out (FIFO), or first-come-first-served (FCFS).
e Last-in-first-out (LIFO), or last-come-first-served (LCFS).
e Shortest processing time first.
e Service according to priority (more than one customer types).
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Queueing Systems and Models » Characteristics & Terminology

e Queue discipline: Which customer to serve first.
e First-in-first-out (FIFO), or first-come-first-served (FCFS).
e Last-in-first-out (LIFO), or last-come-first-served (LCFS).
e Shortest processing time first.
e Service according to priority (more than one customer types).

e Queue behavior: Actions of customers while waiting.
o Balk: leave when they see that the line is too long.
¢ Renege: leave after being in the line when they see that the
line is moving too slowly.
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Queueing Systems and Models » Characteristics & Terminology

e Queue discipline: Which customer to serve first.
e First-in-first-out (FIFO), or first-come-first-served (FCFS).
e Last-in-first-out (LIFO), or last-come-first-served (LCFS).
e Shortest processing time first.
e Service according to priority (more than one customer types).

e Queue behavior: Actions of customers while waiting.
o Balk: leave when they see that the line is too long.
¢ Renege: leave after being in the line when they see that the
line is moving too slowly.

e Service time is the duration of service in a server.
o Constant or random duration.
e May depend on the customer type.
e May depend on the time of day or the queue length.
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Queueing Systems and Models » Characteristics & Terminology

e When without specification, the queueing models considered
in this lecture shall satisfy the following:

@ One customer type.

® Random arrivals (i.e., random interarrival times, iid.).
® No batch (or say, batch size is 1).f

O One queue in one station.

O First-come-first-served (FCFS).

® No balk, no renege.

@ Random service time (depends on nothing else), iid.

T

1+2+43 = The arrival process is a renewal process.
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Queueing Systems and Models » Characteristics & Terminology

e When without specification, the queueing models considered
in this lecture shall satisfy the following:

@ One customer type.

® Random arrivals (i.e., random interarrival times, iid.).
® No batch (or say, batch size is 1).f

O One queue in one station.

O First-come-first-served (FCFS).

® No balk, no renege.

@ Random service time (depends on nothing else), iid.

e Even so, it is not that easy to analyze the queueing models!

T

1+2+43 = The arrival process is a renewal process.
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Queueing Systems and Models » Kendall Notation

e Canonical notational system proposed by Kendall (1953):

X/Y/s/K.
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Queueing Systems and Models » Kendall Notation
e Canonical notational system proposed by Kendall (1953):

X/Y/s/K.
e X represents the interarrival-time distribution.

- M: Memoryless, i.e., exponential interarrival times;
- G: General;
- D: Deterministic.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)


https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://www.jstor.org/stable/2236285
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Systems and Models » Kendall Notation
e Canonical notational system proposed by Kendall (1953):

X/Y/s/K.
e X represents the interarrival-time distribution.

- M: Memoryless, i.e., exponential interarrival times;
- G: General;
- D: Deterministic.

e Y represents the service-time distribution.
- Same letters as the interarrival times.
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Queueing Systems and Models » Kendall Notation
e Canonical notational system proposed by Kendall (1953):

X/Y/s/K.
e X represents the interarrival-time distribution.

- M: Memoryless, i.e., exponential interarrival times;
- G: General;
- D: Deterministic.

e Y represents the service-time distribution.
- Same letters as the interarrival times.
* s represents the number of parallel servers.

- Finite value.
- For infinite number of servers, s is replaced by oc.
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Queueing Systems and Models » Kendall Notation

e Canonical notational system proposed by Kendall (1953):

X/Y/s/K.
e X represents the interarrival-time distribution.

- M: Memoryless, i.e., exponential interarrival times;
- G: General;
- D: Deterministic.

e Y represents the service-time distribution.
- Same letters as the interarrival times.
* s represents the number of parallel servers.
- Finite value.
- For infinite number of servers, s is replaced by oc.
e K represents the station capacity.
- Finite value.
- For infinite capacity, K is replaced by oo, or simply omitted.
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Queueing Systems and Models » Kendall Notation

e Canonical notational system proposed by Kendall (1953):

X/Y/s/K.
e X represents the interarrival-time distribution.

- M: Memoryless, i.e., exponential interarrival times;
- G: General;
- D: Deterministic.

e Y represents the service-time distribution.
- Same letters as the interarrival times.
* s represents the number of parallel servers.

- Finite value.
- For infinite number of servers, s is replaced by oc.

e K represents the station capacity.

- Finite value.
- For infinite capacity, K is replaced by oo, or simply omitted.

o Examples: M/M/1, M/G/1, M/M/s/K.
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® Poisson Process
» Definition
» Properties
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Poisson Process » Definition

e A stochastic process {N(t), t > 0} is said to be a counting
process if N(t) represents the total number of arrivals that
have occurred up to time t.
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Poisson Process » Definition

e A stochastic process {N(t), t > 0} is said to be a counting
process if N(t) represents the total number of arrivals that
have occurred up to time t.

N(t)
4 —
2 —
f_é
0 t
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Poisson Process » Definition

e A stochastic process {N(t), t > 0} is said to be a counting
process if N(t) represents the total number of arrivals that
have occurred up to time t.

N()t
4t —
2+ —_—
R R S RS A L

o Let {X,,, n > 1} denote the interarrival times:

e X; denotes the time of the first arrival;
e Forn > 2, X,, denotes the time between the (n — 1)st and the
nth arrivals.
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Poisson Process » Definition

¢ Definition 1. The counting process {N(t), t > 0} is called a
Poisson process with rate A\, A > 0, if:
e N(0) =0;
e The process has independent and stationary increments;
e Fort >0, N(t) ~ Pois(At), i.e.,

P(N(t) =n) :e_)‘t();lﬁ, n=20,1,2,....

Poisson process C renewal process C counting process.
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Poisson Process » Definition

¢ Definition 1. The counting process {N(t), t > 0} is called a
Poisson process with rate A\, A > 0, if:
e N(0) =0;
e The process has independent and stationary increments;
e Fort >0, N(t) ~ Pois(At), i.e.,

P(N(t) =n) :e_)‘t();lﬁ, n=20,1,2,....

e Independent Increments: The numbers of arrivals in disjoint
time intervals are independent.

Poisson process C renewal process C counting process.
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Poisson Process » Definition

¢ Definition 1. The counting process {N(t), t > 0} is called a
Poisson process with rate A\, A > 0, if:
e N(0) =0;
e The process has independent and stationary increments;
e Fort >0, N(t) ~ Pois(At), i.e.,

P(N(t) =n) :e_)‘t();lﬁ, n=20,1,2,....

e Independent Increments: The numbers of arrivals in disjoint
time intervals are independent.

e Stationary Increments: The distribution of number of arrivals
in any time interval depends only on the length of time
interval, i.e., for s < t, the distribution of N(t) — N(s)
depends only on t — s.

Poisson process C renewal process C counting process.
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Poisson Process » Definition

¢ Definition 2. The counting process {N(t), t > 0} is called a
Poisson process with rate A\, A > 0, if:
e N(0) =0;
e The process has independent and stationary increments;
« P(N(t) =1) = At + o(t);
e P(N(t) > 2) =o(t).
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Poisson Process » Definition

¢ Definition 2. The counting process {N(t), t > 0} is called a
Poisson process with rate A\, A > 0, if:
e N(0) =0;
e The process has independent and stationary increments;
« P(N(t) =1) = At + o(t);
e P(N(t) > 2) =o(t).

¢ Definition 3. The counting process {N(t), t > 0} is called a
Poisson process with rate A\, A > 0, if:
« N(0) = 0;
e {X,, n>1}is a sequence of iid random variables, and
X, ~ Exp(}N).
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Poisson Process » Definition

¢ Definition 2. The counting process {N(t), t > 0} is called a
Poisson process with rate A\, A > 0, if:
e N(0) =0;
e The process has independent and stationary increments;
« P(N(t) =1) = At + o(t);
e P(N(t) > 2) =o(t).

¢ Definition 3. The counting process {N(t), t > 0} is called a
Poisson process with rate A\, A > 0, if:
« N(0) = 0;
e {X,, n>1}is a sequence of iid random variables, and
X, ~ Exp(}N).

e Definition 1, Definition 2 and Definition 3 are equivalent.
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Poisson Process » Properties

e Question 1: When will the next appear?

Standing here, ask, when will the 3™ arrival occur?

TR K K X
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Poisson Process » Properties

e Question 1: When will the next appear?

Standing here, ask, when will the 3™ arrival occur?

04 Xl ‘ XZ 14 X3 T4)(4-1 X5 ¢

P(Xs —a> z|X3 > a)
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Poisson Process » Properties

e Question 1: When will the next appear?

Standing here, ask, when will the 3™ arrival occur?

P(X3—a >z X3 >a)
P(X3 > a)

P(Xs—a>z|X3 >a)=
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Poisson Process » Properties

e Question 1: When will the next appear?

Standing here, ask, when will the 3™ arrival occur?

P(X3—a >z, X3 > a)
P(X3 > a)

_ P(Xz>a+z X3>a)

- P(X3 > a)

P(Xs—a>z|X3 >a)=
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Poisson Process » Properties

e Question 1: When will the next appear?

Standing here, ask, when will the 3™ arrival occur?

a ?
0 ——re——sn s t

P(X3—a >z, X3 > a)
P(X3 > a)

_ P(Xz>a+z X3>a)

- P(X3 > a)

_P(X3>a+2x)

- ]P)(X3 > a)

P(Xs—a>z|X3 >a)=
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Poisson Process » Properties

e Question 1: When will the next appear?

Standing here, ask, when will the 3™ arrival occur?
* *

aﬁl ?
0 4 a | R > t

X1 ' X, L Xs Xy Xs

P(X3—a >z, X3 > a)
P(X3 > a)

_ P(Xz>a+z X3>a)

- P(X3 > a)

_P(X3>a+2x)

- ]P(X3 > a)

o Mata)

= — =€

e—Aa

P(Xs—a>z|X3 >a)=
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Poisson Process » Properties

e Question 1: When will the next appear?

Standing here, ask, when will the 3™ arrival occur?
* *

aﬁl ?
0 4 a | R > t

X1 ' X, L Xs Xy Xs

P(X3—a >z, X3 > a)
P(X3 > a)

_ P(Xz>a+z X3>a)

- P(X3 > a)

_P(X3>a+2x)

- ]P(X3 > a)

e—)\(a+x) e

= —e (Not related to a!)

P(Xs—a>z|X3 >a)=
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Poisson Process » Properties

e Question 1: When will the next appear?

Standing here, ask, when will the 3™ arrival occur?
a | ?

X, Xy Xs X, Xs

P(X3—a >z, X3 > a)
P(X3 > a)

_ P(Xz>a+z X3>a)

- P(X3 > a)

_P(X3>a+2x)

o ]P’(X3 > a)

e—)\(a+x) e

= —¢ - (Not related to al)

P(Xs—a>z|X3 >a)=

e The Poisson process has no memory! (equivalent to the
independent and stationary increments assumption)

17 / 64
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Poisson Process » Properties

o Let S, = X7+ X9+ ---+ X, be the arrival time of the nth

arrival.
e Question 2: If | only know there are n arrivals up to time ¢,
what can | say about the n arrival times S1,...,.5,7

18 / 64
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Poisson Process » Properties

o Let S, = X7+ X9+ ---+ X, be the arrival time of the nth
arrival.

e Question 2: If | only know there are n arrivals up to time ¢,
what can | say about the n arrival times S1,...,.5,7

e A simplified case:

I'm only told that up to time t, one arrival has occurred.
What is the distribution of that arrival time S; (= X;) ?
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Poisson Process » Properties

o Let S, = X7+ X9+ ---+ X, be the arrival time of the nth
arrival.

e Question 2: If | only know there are n arrivals up to time ¢,
what can | say about the n arrival times S1,...,.5,7
e A simplified case:

I'm only told that up to time t, one arrival has occurred.
What is the distribution of that arrival time S; (= X;) ?

0 t

e Intuition:

e Since Poisson process possesses independent and stationary
increments, each interval of equal length in [0, ¢] should have
the same probability of containing the arrival.

* Hence, the arrival time should be uniformly distributed on [0, ¢].

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 18 / 64


https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Poisson Process » Properties

Proof.

P{X, < s|N(t) = 1}
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Poisson Process » Properties

Proof.

P{X; < s, N(t) =1}

PXe<sINO =1 = =y =13
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Poisson Process » Properties

Proof.

P{X; <s|N(t)=1} = P{X; <s N(t) =1}

P{N(t) =1}
_ P{1 arrival in [0, 5), 0 arrival in [s, )}
- P{N(t) =1}
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Poisson Process » Properties

Proof.
P{X: <s, N(t) =1}
P{N(t) = 1}
_ P{1 arrival in [0, 5), 0 arrival in [s, )}
B P{N(t) =1}
__ IP{1 arrival in [0, 5)} P{O arrival in [s,t)}
- P{N(t) =1}

P{X; < s|N(t) =1} =

(independent)
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Poisson Process » Properties

Proof.

P{X: <s, N(t) =1}
P{N(t) = 1}

_ P{1 arrival in [0, 5), 0 arrival in [s, )}

B P{N(t) =1}

__ IP{1 arrival in [0, 5)} P{O arrival in [s,t)}

- P{N(t) = 1}

_ P{N(s) =1} P{N(t —s) =0}

P{N(t) = 1}

P{X; < s|N(t) =1} =

(independent)

(stationary)
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Poisson Process » Properties

Proof.

P{X: <s, N(t) =1}
P{N(t) = 1}
_ P{1 arrival in [0, 5), 0 arrival in [s, )}
B P{N(t) =1}
__ IP{1 arrival in [0, 5)} P{O arrival in [s,t)}
- P{N(t) = 1}
_ P{N(s) =1} P{N(t —s) =0}
P{N(t) = 1}
e \ge—AE—9)
e~ Mt

P{X; < s|N(t) =1} =

(independent)

(stationary)
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Poisson Process » Properties

Proof.

P{X: <s, N(t) =1}

P{N(t) = 1}
_ P{1 arrival in [0, 5), 0 arrival in [s, )}
B P{N(t) =1}
__ IP{1 arrival in [0, 5)} P{O arrival in [s,t)}

P{N(t) = 1}

ELEEE LR -
e \ge—AE—9)

e~ Mt

P{X; < s|N(t) =1} =

(independent)

kil
-
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Poisson Process » Properties

Proof.

P{X: <s, N(t) =1}

P{N(t) = 1}
_ P{1 arrival in [0, 5), 0 arrival in [s, )}
B P{N(t) =1}
__ IP{1 arrival in [0, 5)} P{O arrival in [s,t)}
- P{N(t) = 1}
ELEEE LR -
e \ge—AE—9)

e~ Mt

P{X; < s|N(t) =1} =

(independent)

kil
-

e Remark: This result can be generalized to n arrivals.
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Poisson Process » Properties

Property (Conditional Distribution of Arrival Times)

Given that N (t) = n, the n arrival times Sy, ..., S, have the
same distribution as the order statistics corresponding to n
independent RVs uniformly distributed on the interval (0, ¢).
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Poisson Process » Properties

Property (Conditional Distribution of Arrival Times)

Given that N (t) = n, the n arrival times Sy, ..., S, have the
same distribution as the order statistics corresponding to n
independent RVs uniformly distributed on the interval (0, ¢).

e |llustration:

Given N(t) = n, how can | generate a sample of {S3,S,, ..., S} ?

L

0 t
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Poisson Process » Properties

Property (Conditional Distribution of Arrival Times)

Given that N (t) = n, the n arrival times Sy, ..., S, have the
same distribution as the order statistics corresponding to n
independent RVs uniformly distributed on the interval (0, ¢).

e |llustration:

Given N(t) = n, how can | generate a sample of {S3,5,, ..., S} ?
n iid samples of uniform RV l

0 t

1. Uniformly and independently sample n points on [0, t].

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)


https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Poisson Process » Properties

Property (Conditional Distribution of Arrival Times)

Given that N (t) = n, the n arrival times Sy, ..., S, have the
same distribution as the order statistics corresponding to n
independent RVs uniformly distributed on the interval (0, ¢).

e lllustration:
Given N(t) = n, how can | generate a sample of {S3,5,, ..., S} ?
n iid samples of uniform RV l
0 4 4 4 t
51 SZ Sn
1. Uniformly and independently sample n points on [0, t].
2. From small to large, call them Sy, S5, ..., Sy,
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Poisson Process » Properties

Property (Conditional Distribution of Arrival Times)

Given that N (t) = n, the n arrival times Sy, ..., S, have the
same distribution as the order statistics corresponding to n
independent RVs uniformly distributed on the interval (0, ¢).

e lllustration:
Given N(t) = n, how can | generate a sample of {S3,5,, ..., S} ?
n iid samples of uniform RV l
0 4 4 4 t
51 SZ Sn
1. Uniformly and independently sample n points on [0, t].
2. From small to large, call them Sy, S5, ..., Sy,

e This is very nice for simulation!
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© Single-Station Queues
» Notations
» General Results
» Little's Law
» M/M/1 Queue
» M/M/s Queue
» M/M/oo Queue
» M/M/1/K Queue
» M/M/s/K Queue
» M/G/1 Queue
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Single-Station Queues » Notations

e Let L(t) denote the number of customers in the station at
time ¢.
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Single-Station Queues » Notations

e Let L(t) denote the number of customers in the station at

time ¢.
L(r)
3 —
[
[
[
[
|
2 ‘_‘;_“
|
| |
I I
I I
o
|
1 [ | | |
[ | | |
[ I I I
[ I I I
N L |
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0 2 4 6 8 10 12 14 16 18 T=20 1

Figure: Illustration of L(t) (from [Banks et al. (2010))

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 22 / 64


https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://www.pearson.com/us/higher-education/program/Banks-Discrete-Event-System-Simulation-5th-Edition/PGM130682.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » Notations

e Let L(t) denote the number of customers in the station at

time ¢.
L(1)
3 —
[
[
[
[
|
2 ‘_‘;_“
|
| |
I I
I I
o
|
1 [ | | |
[ | | |
[ I I I
[ I I I
N L |
R S O H RN PO NN TR RN RO B
0 2 4 6 8 10 12 14 16 18 T=20 1

Figure: Illustration of L(t) (from [Banks et al. (2010))

o Let L(T) denote the (time-weighted) average number of
customers in the station up to time 71"

L(T) = L [ L(t)dt.
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Single-Station Queues » Notations

o Another expression of L(T): Let T}, denote the total time
during [0, T'] in which the station contains exactly n customers.

L(t)
| |
| |
|
ool
e - T
| |
-
T 7 I T,
1 1 - 1! ! 1 , ; 1 :
P | | |
P i i i
I | | |
R R R R R N R
0 2 4 6 8 10 12 14 16 18 T-20 1
Figure: Illustration of L(t) (from |Banks et al. (2010))
00 T,
¢ Tfo dt—TZ “onTn =Y 0lon ()
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Single-Station Queues » Notations

e Suppose during time [0, 7], totally N(T") customers have
entered the station, and let Wy, Wy, ..., WN(T) denote the
time each customer spends in the station up to time 7%

TThe time includes both the waiting time in queue and the time in server. The part after 7" is not counted.
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Single-Station Queues » Notations

e Suppose during time [0, 7], totally N(T") customers have
entered the station, and let Wy, Wy, ..., WN(T) denote the
time each customer spends in the station up to time 7%

o Let /V[7(T) denote the average sojourn time (FZ®ZH[A]) in the
station up to time 7"
N

G

I¥
._.

%

TThe time includes both the waiting time in queue and the time in server. The part after 7" is not counted.
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Single-Station Queues » Notations

e Suppose during time [0, 7], totally N(T") customers have
entered the station, and let Wy, Wy, ..., WN(T) denote the
time each customer spends in the station up to time 7%

o Let /V[7(T) denote the average sojourn time (ZZE4HJ[A]) in the
station up to time 7"

2
=

@
Il
._.

e In a similar way, we can also define

. ZQ(T) — The average number of customers in the queue up to
time T'.

o /WQ(T) — The average waiting time in the queue up to time T.

TThe time includes both the waiting time in queue and the time in server. The part after 7" is not counted.
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Single-Station Queues » Notations

e Now we consider the long-run measures.
e L — The long-run average number of customers in the station:

L= lim L(T).
T—o0
e W — The long-run average sojourn time in the station:
W= lim W(T).
T—o0
e Lo — The long-run average number of customers in the queue:
Lo = lim Lg(T).
Q= Jim Lq(T)
e Wg — The long-run average waiting time in the queue:

WQ = Th_r}éo WQ (T)

Spring 2022 (full-time)
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Single-Station Queues » Notations

e Now we consider the long-run measures.
e L — The long-run average number of customers in the station:

L= lim L(T).
T—o0
e W — The long-run average sojourn time in the station:
W= lim W(T).
T—o0
e Lo — The long-run average number of customers in the queue:
Lo = lim Lg(T).
Q= Jim Lq(T)
e Wg — The long-run average waiting time in the queue:

WQ = Th_r}éo WQ (T)

e Question: When will L, W, Lg and W exist (and < 00)?
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Single-Station Queues » Notations

e We also define the limiting probability that there will be
exactly n customers in the station as time goes to infinity:

P, = lim P{L(t)=n}, n=0,1,2,....
t—o0
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Single-Station Queues » Notations

e We also define the limiting probability that there will be
exactly n customers in the station as time goes to infinity:

P, = lim P{L(t)=n}, n=0,1,2,....
t—o0

e Question: When will P, exist?
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Single-Station Queues » Notations

e We also define the limiting probability that there will be
exactly n customers in the station as time goes to infinity:

P, = lim P{L(t)=n}, n=0,1,2,....
t—o0

e Question: When will P, exist?

o Moreover, for an arbitrary X/Y/s/K queue
e Let A\ denote the arrival rate, i.e.,

. . . 1
Elfinterarrival time] = T
e Let p denote the service rate in one server, i.e.,

1
E[service time] = —.
w
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Single-Station Queues » General Results

e Question: When will L, W, Lg, Wg and P, exist?
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Single-Station Queues » General Results

e Question: When will L, W, Lg, Wg and P, exist?

e Answer: When the queue is stable.!

TThat is to say, the underlying Markov chain is positive recurrent.
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Single-Station Queues » General Results

e Question: When will L, W, Lg, Wg and P, exist?
e Answer: When the queue is stable.!

e Question: When will the queue be stable?!

TThat is to say, the underlying Markov chain is positive recurrent.
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Single-Station Queues » General Results

e Question: When will L, W, Lg, Wg and P, exist?
e Answer: When the queue is stable.!

e Question: When will the queue be stable?!

Theorem 1 (Condition of Stability)

For an X/Y/s/oco queue (i.e., infinite capacity) with arrival
rate A and service rate p, it is stable if

A < sp.

And, an X/Y/s/K queue (i.e., finite capacity) will always
be stable.

TThat is to say, the underlying Markov chain is positive recurrent.
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Single-Station Queues » General Results

e Recall that P, == limy ,oo P{L(t) =n}, n=0,1,2,....
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Single-Station Queues » General Results

e Recall that P, == limy ,oo P{L(t) =n}, n=0,1,2,....

e P, is also called the probability that there are exactly n
customers in the station when it is in the steady state.
e Since the system is stable and run for infinitely long time, it
should enters some steady state (i.e., has nothing to do with
the initial state).
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Single-Station Queues » General Results

e Recall that P, == limy ,oo P{L(t) =n}, n=0,1,2,....

e P, is also called the probability that there are exactly n
customers in the station when it is in the steady state.
e Since the system is stable and run for infinitely long time, it
should enters some steady state (i.e., has nothing to do with
the initial state).

e L can also be written as L := ) >° ' nP, (see next slide).

e L is also called the expected number of customers in the
station in steady state;

e W is also called the expected sojourn time in the station in
steady state;

e Lq is also called the expected number of customers in the
queue in steady state;

e Wy is also called the expected waiting time in the queue in
steady state.
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Single-Station Queues » General Results

e Recall that P,, .= limy_,oc P{L(t) =n}, n=0,1,2,....
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Single-Station Queues » General Results

e Recall that P,, .= limy_,oc P{L(t) =n}, n=0,1,2,....

e It turns out that, when the queue is stable, P, also equals the
long-run proportion of time that the station contains exactly n
customers,! i.e., with probability 1, for all n,

amount of time during [0, T'] that station contains n customers

Pn = fim. T

TA sufficient condition is that the queueing process is regenerative, which is satisfied in our discussion.
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Single-Station Queues » General Results

e Recall that P,, .= limy_,oc P{L(t) =n}, n=0,1,2,....

e It turns out that, when the queue is stable, P, also equals the
long-run proportion of time that the station contains exactly n
customers,! i.e., with probability 1, for all n,

p i amount of time during [0, T'] that station contains n customers
= limm .
" T—o00 T

o Recall L(T) =L [T L(t)dt = 7% 0 (L), then

TA sufficient condition is that the queueing process is regenerative, which is satisfied in our discussion.
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Single-Station Queues » General Results

e Recall that P,, .= limy_,oc P{L(t) =n}, n=0,1,2,....

e It turns out that, when the queue is stable, P, also equals the
long-run proportion of time that the station contains exactly n
customers,! i.e., with probability 1, for all n,

amount of time during [0, T'] that station contains n customers

P, =1
" TE;I;O T
o Recall L(T) =L [TL =50 n (%), then
L = (T
B M= 2 (?)

TA sufficient condition is that the queueing process is regenerative, which is satisfied in our discussion.
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Single-Station Queues » General Results

e Recall that P,, .= limy_,oc P{L(t) =n}, n=0,1,2,....

e It turns out that, when the queue is stable, P, also equals the
long-run proportion of time that the station contains exactly n
customers,! i.e., with probability 1, for all n,

amount of time during [0, T'] that station contains n customers

Fu= i, T
o Recall L(T) =L [T L(t)dt = 7% 0 (L), then
. T . - Tn
B MO =, 2 n (%)
— . T,
= 2 Tlgi;on <?> (by DCT)

TA sufficient condition is that the queueing process is regenerative, which is satisfied in our discussion.
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Single-Station Queues » General Results

e Recall that P,, .= limy_,oc P{L(t) =n}, n=0,1,2,....

e It turns out that, when the queue is stable, P, also equals the
long-run proportion of time that the station contains exactly n
customers,! i.e., with probability 1, for all n,

amount of time during [0, T'] that station contains n customers

Fu= i, T
o Recall L(T) =L [T L(t)dt = 7% 0 (L), then
. T . - Tn
B MO =, 2 n (%)

— . T,

= 2 Tlgi;on <?> (by DCT)

= ZnPn.
n=0

TA sufficient condition is that the queueing process is regenerative, which is satisfied in our discussion.
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Single-Station Queues » Little's Law

e Little's Law (5FE /7 #2) is one of the most general and
versatile laws in queueing theory.
e It is named after John D.C. Little, who was the first to prove a

version of it, in 1961.
e When used in clever ways, Little's Law can lead to remarkably

simple derivations.
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Single-Station Queues » Little's Law

e Little's Law (5FE /7 #2) is one of the most general and
versatile laws in queueing theory.
e It is named after John D.C. Little, who was the first to prove a

version of it, in 1961.
e When used in clever ways, Little's Law can lead to remarkably

simple derivations.

Theorem 2 (Little's Law — Empirical Version)

Define the observed entering rate A := N(T)/T, then
L(T) = AW(T), Lo(T) = AWq(T).
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Single-Station Queues » Little's Law

e Verify Little's Law.
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Single-Station Queues » Little's Law

L(1)

[Q)svsa |

e Verify Little's Law.

L(1)
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Figure: lllustration of L(t) and W;

SHEN Haihui

MEM®6810 Modeling and Simulation,

(from | Banks et al. (2010))
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Single-Station Queues » Little's Law

e Verify Little's Law.
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Figure: Illustration of L(t) and W (from Banks et al. (2010))

X =N(T)/T =5/20 = 0.25.
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Single-Station Queues » Little's Law

e Verify Little's Law.
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Figure: Illustration of L(t) and W (from Banks et al. (2010))

X =N(T)/T =5/20 = 0.25.
W(T) = i LD W = L2 +5+54T+4) = 2 =46
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Single-Station Queues » Little's Law

e Verify Little's Law.
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Figure: Illustration of L(t) and W (from Banks et al. (2010))

X =N(T)/T =5/20 = 0.25.
wW(T ):N(T)ZN(T)Wz—%(2+5+5+7+4):§=4.6.
L(

T)=a> 0 onTy=55(0x3+1x12+2x4+3x1) =23 =115
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Single-Station Queues » Little's Law

e Verify Little's Law.
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Figure: Illustration of L(t) and W (from Banks et al. (2010))

X =N(T)/T =5/20 = 0.25.
W(T) = wim S W, = %(2+5+5+7+4)=§=4.6.

L(T)= A2 T = 5 (0x3+1x12+2x4+3x1) =2 = 1.15.

So, A\W(T') = 0.25 x 4.6 = 1.15 = L(T).
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Single-Station Queues » Little's Law

e Verify Little's Law.
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Figure: Illustration of L(t) and W (from Banks et al. (2010))

X =N(T)/T =5/20 = 0.25.
W(T) = wim S W, = %(2+5+5+7+4)=§=4.6.

L(T)= A2 T = 5 (0x3+1x12+2x4+3x1) =2 = 1.15.

So, A\W(T) =0.25 x 4.6 = 1.15 = L(T).  (Why it always holds?)
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Single-Station Queues » Little's Law

e Verify Little's Law.
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Figure: Illustration of L(t) and W (from Banks et al. (2010))

e Why it always holds?
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Single-Station Queues » Little's Law

e Verify Little's Law.
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Figure: Illustration of L(t) and W (from Banks et al. (2010))

e Why it always holds?
L(T) = L2  nT, = 4 x area.
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Single-Station Queues » Little's Law

e Verify Little's Law.
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Figure: Illustration of L(t) and W (from Banks et al. (2010))

e Why it always holds?
L(T) = L2  nT, = 4 x area.

NTT: N
AW(T) = M0 i S W
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Single-Station Queues » Little's Law

e Verify Little's Law.
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Figure: Illustration of L(t) and W (from Banks et al. (2010))

e Why it always holds?
L(T) = L2  nT, = 4 x area.

N N(T N(T N(T
M) = ME s XD Wy = 250w,
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e Verify Little's Law.
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Figure: Illustration of L(t) and W (from Banks et al. (2010))

e Why it always holds?
L(T) = L2  nT, = 4 x area.
N7 N(T N(T N(T
AW(T) = %ﬁ YN w, = Ly MO W, = L x area.
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Single-Station Queues » Little's Law

e Verify Little's Law.
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Figure: Illustration of L(t) and W (from Banks et al. (2010))

e Why it always holds?

L(T) = 730 nT, = % X area.
N(T N(T (T
AW(T) = ”EP)N(lT)Z()W TE“)Wz T X area.

So, L(T) = )\W(T) always holds.
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Single-Station Queues » Little's Law

e Verify Little's Law.
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Figure: Illustration of L(t) and W (from Banks et al. (2010))

e Why it always holds?
L(T) = L2  nT, = 4 x area.
AW(T) = %ﬁ YN w, = Ly MO W, = L x area.
So, L(T) = /):W(T) always holds.

e The same argument for EQ(T) = XWQ(T).
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Single-Station Queues » Little's Law

Theorem 3 (Little's Law — Limit/Expectation Version)

For a stable queue, let \* denote the arrival rate or entering
rate, then

L=XW, Lg=XWq.
Caution: When \* is the arrival rate, the time average (W, Wg)
is based on all customers (who enters the station and who are lost);
When \* is the entering rate, the time average is only based on
the customers who enters the station.
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Single-Station Queues » Little's Law

Theorem 3 (Little's Law — Limit/Expectation Version)

For a stable queue, let \* denote the arrival rate or entering
rate, then

L=XW, Lg=XWq.
Caution: When \* is the arrival rate, the time average (W, Wg)
is based on all customers (who enters the station and who are lost);
When \* is the entering rate, the time average is only based on
the customers who enters the station.

e Some Remarks:
 For a customer who is lost (due to the finite capacity), he
spends 0 amount of time in the station (or queue).
¢ Once we know anyone of L, W, Lg and Wy, we can compute
the rest using Little's Law.
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Single-Station Queues » M/M/1 Queue

o M/M/1 Queue'

e The interarrival times are iid random variables with Exp())
distribution, that is to say, customers arrive according to a
Poisson process with rate \.

e The service times are iid random variables with Exp(u)
distribution.

e The customers are served in an FCFS fashion by a single server.

e The capacity is unlimited, i.e., waiting space is unlimited.

e M/M/1 queue is stable if and only if A\ < p.

e Due to unlimited capacity, arrival rate = entering rate.

TM/M/l Queue C Birth and Death Process with Infinite Capacity C Continuous-Time Markov Chain.
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Single-Station Queues » M/M/1 Queue

o M/M/1 Queue'

e The interarrival times are iid random variables with Exp())
distribution, that is to say, customers arrive according to a
Poisson process with rate \.

e The service times are iid random variables with Exp(u)
distribution.

e The customers are served in an FCFS fashion by a single server.

e The capacity is unlimited, i.e., waiting space is unlimited.

e M/M/1 queue is stable if and only if A\ < p.

e Due to unlimited capacity, arrival rate = entering rate.

e We now want to compute all the measures P,, L, W, Lg and

TM/M/l Queue C Birth and Death Process with Infinite Capacity C Continuous-Time Markov Chain.
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Single-Station Queues » M/M/1 Queue

e Recall that L can be computed via L = Z;f:o npP,, where P,
has two interpretations:
e Long-run proportion of time that the station contains exactly

n customers;
o Probability that there are exactly n customers in the station as

time goes to infinity (or equivalently, in the steady state).

34 / 64
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Single-Station Queues » M/M/1 Queue

e Recall that L can be computed via L = Z;f:o npP,, where P,
has two interpretations:

e Long-run proportion of time that the station contains exactly
n customers;

o Probability that there are exactly n customers in the station as
time goes to infinity (or equivalently, in the steady state).

e Define the state as the the number of customers in the
system.
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Single-Station Queues » M/M/1 Queue

e Recall that L can be computed via L = Z;f:o npP,, where P,
has two interpretations:
e Long-run proportion of time that the station contains exactly
n customers;
o Probability that there are exactly n customers in the station as
time goes to infinity (or equivalently, in the steady state).

e Define the state as the the number of customers in the
system.

e The state space diagram is as follows:
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Single-Station Queues » M/M/1 Queue
A A A /L A A A
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Single-Station Queues » M/M/1 Queue
A A A /L A A A

Key Observation 1

Rate at which the process leaves state n
= Rate at which the process enters state n.
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Single-Station Queues » M/M/1 Queue
A A A /L A A A

Key Observation 1

Rate at which the process leaves state n
= Rate at which the process enters state n.

Heuristic Proof.

e In any time interval, the number of transitions into state n must
equal to within 1 the number of transitions out of state n. (Why?)

¢ Hence, in the long run, the rate into state n must equal the rate out
of state n.

35 / 64
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Single-Station Queues » M/M/1 Queue
I i T . n I i

Rate at which the process leaves state 0 = Py,

Rate at which the process leaves state n = P,,(u+A), n > 1;
Rate at which the process enters state 0 = Py u;

Rate at which the process enters state n = P,,_1 A+ P14,
n>1.
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Single-Station Queues » M/M/1 Queue
I i T . n I i

Rate at which the process leaves state 0 = Py,

Rate at which the process leaves state n = P,,(u+A), n > 1;
Rate at which the process enters state 0 = Py u;

Rate at which the process enters state n = P,,_1 A+ P14,
n>1.

If Xq,..., X, are independent random variables, and X; ~
Exp(Ai), i =1,...,n, then

min{Xy,..., X} ~Exp(A1 + -+ + \p).
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Single-Station Queues » M/M/1 Queue

Theorem 4 (Limiting Distribution of M /M /1 Queue)

For an M/M/1 queue, when it is stable (A < ), its limiting
(steady-state) distribution is given by
Po=0-p)p" nz0,

where p == A/ < 1. (p is called the server utilization.)
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Single-Station Queues » M/M/1 Queue

Theorem 4 (Limiting Distribution of M /M /1 Queue)

For an M/M/1 queue, when it is stable (A < ), its limiting
(steady-state) distribution is given by
Po=0-p)p" nz0,

where p == A/ < 1. (p is called the server utilization.)

Proof.
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Single-Station Queues » M/M/1 Queue

Theorem 4 (Limiting Distribution of M /M /1 Queue)

For an M/M/1 queue, when it is stable (A < ), its limiting
(steady-state) distribution is given by
Po=0-p)p" nz0,

where p == A/ < 1. (p is called the server utilization.)

Proof. Due to Observations 1 & 2,

State Rate Process Leaves Rate Process Enters
0 P()/\ = PLu
n,n>1 P,(p+ XN = P A+ Py
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Single-Station Queues » M/M/1 Queue

Theorem 4 (Limiting Distribution of M /M /1 Queue)

For an M/M/1 queue, when it is stable (A < ), its limiting
(steady-state) distribution is given by
Po=0-p)p" nz0,

where p == A/ < 1. (p is called the server utilization.)

Proof. Due to Observations 1 & 2,

State Rate Process Leaves Rate Process Enters
0 P()/\ = PLu
n,n>1 P,(p+ XN = Py aA+ Poip

Rewriting these equations gives
Pox = Pip,
PA=Poiip+ (PooaA— Pop), n>1.
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Single-Station Queues » M/M/1 Queue

Recall that
PoA = Py,
P A=Poiip+ (PoiA— Pop), n>1.
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Single-Station Queues » M/M/1 Queue

Recall that
PoA = Py,
P A=Poiip+ (PoiA— Pop), n>1.

Or, equivalently,
PoA = Py,
P\ =P+ (PoA— Pip) = Py,
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Single-Station Queues » M/M/1 Queue

Recall that
PoA = Py,
P A=Poiip+ (PoiA— Pop), n>1.

Or, equivalently,
PoA = Py,
P\ = Py + (PoX — Pip) = Pap,
Py\ = P3pi+ (P — Pop) = Psp,
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Single-Station Queues » M/M/1 Queue

Recall that
PoA = Py,
P A=Poiip+ (PoiA— Pop), n>1.

Or, equivalently,
PoA = Py,
PiA = Pyu+ (Po\— Pip) = Pop,
Po)\ = P3pu+ (Py\ — Pop) = Pap,
P A= Poip+ (PoaXA— Pop) = Py, n>1.
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Single-Station Queues » M/M/1 Queue

Recall that

PoA = Py,
PoA = Posrpi+ (Paoi X — Popt), n> 1.

Or, equivalently,
PoA = Py,
PiA = Pyu+ (Po\— Pip) = Pop,
Po)\ = P3pu+ (Py\ — Pop) = Pap,

P A= Poip+ (PoaXA— Pop) = Py, n>1.

Let p:= A/u (< 1), solving in terms of Py yields
Py = Pyp,
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Single-Station Queues » M/M/1 Queue

Recall that

PoA = Py,
PoA = Posrpi+ (Paoi X — Popt), n> 1.

Or, equivalently,
PoA = Py,
PiA = Pyu+ (Po\— Pip) = Pop,
Po)\ = P3pu+ (Py\ — Pop) = Pap,

P A= Poip+ (PoaXA— Pop) = Py, n>1.

Let p:= A/u (< 1), solving in terms of Py yields
Py = Pyp,
P2=P1/0=Pop2.
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Single-Station Queues » M/M/1 Queue

Recall that

PoA = Py,
PoA = Posrpi+ (Paoi X — Popt), n> 1.

Or, equivalently,
PoA = Py,
PiA = Pyu+ (Po\— Pip) = Pop,
Po)\ = P3pu+ (Py\ — Pop) = Pap,

P A= Poip+ (PoaXA— Pop) = Py, n>1.

Let p:= A/u (< 1), solving in terms of Py yields
Py = Pyp,
Py = Pip = Pyp”,
P, =P, 1p=Fp", n>1
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Single-Station Queues

Recall that
PoA = Py,
P A=Poiip+ (PoiA— Pop), n>1.

Or, equivalently,
PoA = Py,
P\ = Py + (PoX — Pip) = Pap,
Py\ = P3pi+ (P — Pop) = Psp,

P A= Poip+ (PoaXA— Pop) = Py, n>1.

Let p:= A/u (< 1), solving in terms of Py yields
Py = Pyp,
Py = Pip = Pyp”,
P, =P, 1p=Fp", n>1

Since 1 = X2 (P, = PyX02 4p™ = Py /(1 — p), we have
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Single-Station Queues

Recall that
PoA = Py,
P A=Poiip+ (PoiA— Pop), n>1.

Or, equivalently,
PoA = Py,
P\ = Py + (PoX — Pip) = Pap,
Py\ = P3pi+ (P — Pop) = Psp,

P A= Poip+ (PoaXA— Pop) = Py, n>1.

Let p:= A/u (< 1), solving in terms of Py yields
Py = Pyp,
Py = Pip = Pyp”,
P, =P, 1p=Fp", n>1
Since 1 = X2 (P, = PyX02 4p™ = Py /(1 — p), we have
Py=1-p, and P,=(1-p)p", n>1.
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Single-Station Queues » M/M/1 Queue

o L=3% 2 nP, =" n(l—p)p"= -
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Single-Station Queues » M/M/1 Queue

o L=3% "2 nP,=> " n(l—p)p" ﬁ.

e Using Little's Law, W = L/\ =

>f|>—‘
w:

|
N

>
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Single-Station Queues » M/M/1 Queue

o L= Conby =32 gn(l—p)p" =12,

e Using Little's Law, W = L/\ = %Tin = ﬁ

o Lo=2 i (n =P, =371 (n—1)(1—=p)p" ==
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Single-Station Queues » M/M/1 Queue

o L= Y gnPy = Sogn(l - )" = 2

—p
e Using Little's Law, W = L/A = 3 & L= ﬁ

2
Lo =T (- VP = T (- (1 - )" = £
e Using Little's Law, Wy = Lo/ = %i% = ;%TLLp = ﬁ.
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Single-Station Queues » M/M/1 Queue
o L=3Tonby =3 "02on(1—p)p" = 12,

Using Little's Law, IV = L/A = 1 & = .

Lo=Yplin=1)P, =3 (n—=1)(1—=p)p" = ¢

Using Little's Law, W = Lg/A = %-ﬁ =

Or, Wo = W — E[service time] = 1__
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Single-Station Queues

[Q)svsa |

L=3%>nP, =" n(l—p)p" %.

Using Little's Law, I/ = L/A = ;& 2 = ﬁ

Lo=2321n =Py =37 (n—1)(1 —p)p" =
Using Little’s Law, 1) = Lo/A = 14 = L2 =
Or, W = W — E[service time| = ;ﬁ - i = u(u)\—A)

Using Little’s Law, Lo = AWg = A-L; = £
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Single-Station Queues » M/M/1 Queue

o L=3% 2 nP, =" n(l—p)p"= %.

Using Little's Law, W = L/\ = %Tin = ﬁ

Lo=3m2i(n=1)Py =302 (n— 1)(1 = p)p" = =,

Using Little's Law, W = Lo/A = 1= =

Or, W = W — E[service time] = — —

Using Little's Law, Lo = AWg = ALy = 2.

e Due to unlimited capacity, arrival rate = entering rate, so the
time average (W, W() is based on all customers.

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 39 / 64


https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1 Queue

o L=3% 2 nP, =" n(l—p)p"= ﬁ.

Using Little's Law, W = L/\ = %Tin = TL\

Lo=3m2i(n=1)Py =302 (n— 1)(1 = p)p" = =,

Using Little's Law, W = Lo/A = 1= =

Or, W = W — E[service time] = — —

Using Little's Law, Lo = AWg = ALy = 2.

Due to unlimited capacity, arrival rate = entering rate, so the
time average (W, W() is based on all customers.

o P(the server is idle) = Py =1 — p.
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Single-Station Queues

[Q)svsa |

L=30lonby =302 gn(l = p)p" = 2.

Using Little's Law, I/ = L/A = ;& 2 = TL\

Lo =552 (n— )Py = S22, (n— DA - p)p" = .

Using Little's Law, W = Lo/A = %-% = ;ltlfp X

Or, Wo = W — E[service time] = ﬁ _
Using Little's Law, Lo = AWg = )\_/\ = £

Due to unlimited capacity, arrival rate = entering rate, so the
time average (W, W() is based on all customers.

P(the server is idle) = Py =1 — p.

Asp—1,all L, W, Lg and Wy tend to oo.
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Single-Station Queues » M/M/s Queue

o M/M/s Queue'

o Customers arrive according to a Poisson process with rate \.

e The service times are iid random variables with Exp(u)
distribution.

e There are s parallel servers.

e The customers form a single queue and get served by the next
available server in an FCFS fashion.

e The capacity is unlimited, i.e., waiting space is unlimited.

e M/M/s queue is stable if and only if A\ < spu.

e Due to unlimited capacity, arrival rate = entering rate.

TM/M/l Queue C M/M/s Queue C Birth and Death Process with Infinite Capacity C CTMC.
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Single-Station Queues » M/M/s Queue

o M/M/s Queue'

e Customers arrive according to a Poisson process with rate A.

e The service times are iid random variables with Exp(u)
distribution.

e There are s parallel servers.

e The customers form a single queue and get served by the next
available server in an FCFS fashion.

e The capacity is unlimited, i.e., waiting space is unlimited.

e M/M/s queue is stable if and only if A\ < spu.

e Due to unlimited capacity, arrival rate = entering rate.

e M/M/s queue is a generalized version of M /M /1 queue. Let
s =1, all results should degenerate to those of M /M/1.

TM/M/l Queue C M/M/s Queue C Birth and Death Process with Infinite Capacity C CTMC.
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Single-Station Queues » M/M/s Queue

e The state space diagram is as follows:

A A A A A A A
X
H 2p 3u (s—1)pu Spt Spt St
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Single-Station Queues » M/M/s Queue

e The state space diagram is as follows:
A A A A A A A
/A
H 2p 3 (s=1p S S Spt

Theorem 5 (Limiting Distribution of M /M /s Queue)

For an M/M/s queue, when it is stable (A < su), its limiting
(steady-state) distribution is given by

S

. -1
1 )\ T s ,s+1
B e S

S11—
= I stl1—p

where the server utilization p := A\/(su) < 1, and

#(ﬁ) , if0<n<s,
Pn = .
" ‘:—!p”, ifn>s-+1.
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Single-Station Queues » M/M/s Queue

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)


https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/s Queue
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Single-Station Queues » M/M/s Queue

o Lg= Zzo:s(n —8)P, = fo:s(n —5)Popn = Zzio kPopsik
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Single-Station Queues » M/M/s Queue

o Lg= Zzo:s(n —8)P, = fo:s(n —5)Popn = Zzio kPopsik
= Ezozl kP()pspk
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Single-Station Queues » M/M/s Queue

o Lg= Zzo:s(n —8)P, = fo:s(n —5)Popn = Zzio kPopsik
= Ezozl kP()pspk = Zozl szpk
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Single-Station Queues » M/M/s Queue

o Lg= Zzo:s(n —8)P, = fo:s(n —5)Popn = Zzio kPopsik

= kPopsp™ = 1 kPt = uﬁ%ﬁ
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Single-Station Queues » M/M/s Queue

o Lo=202s(n—s)Py =300 (0 — s)Popn = 32520 kPopstk
=30 kPopspb = S50 kPypb = o2

(1=p)*-
e Using Little's Law, Wy = Lo/ = %(11}5)2 = s,u(lpip)2'
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Single-Station Queues » M/M/s Queue

o Lg= Zfzs(n —8)P, = fo:s(n —5)Popn = Zzio kPops
= Yt kPopsp® = Y32, kPypt = @Ii%)z-

e Using Little's Law, Wy = Lo/ = %(11}5)2 — Su(fip)2'
o W =Wg + E[service time] = S#(fijp)g + i
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Single-Station Queues » M/M/s Queue

Lo = Zfzs(n —8)P, = fo:s(n —5)Popn = Zzio kPops
= Yt kPopsp® = Y32, kPypt = @Ii%)z-

e Using Little's Law, Wy = Lo/ = %(11}5)2 — Su(fip)2'
o W =Wg + E[service time] = S#(fijp)g + i

Using Little's Law,
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Single-Station Queues

[Q)svsa |

Lo =2ntsn—s)Pn =3

o0
n=s

» M/M/s Queue

(n = 8)Popn = 3 5o kPops+k

= Yrts kPopspt = 302 kPspb = @Ii%)z-

Using Little's Law, W = Lg/\ = %(1

W = Wq + E[service time] =

Using Little's Law,

L:)\WI)\(WQ+I%):LQ+£:(11}5)2+A_

PSp — Ps
—p)? T su(l-p)*
_ P 41
su(i—p)? T -

m
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Single-Station Queues » M/M/s Queue

[Q)svsa |

Lo = Zfzs(n —8)P, = fo:s(n —5)Popn = ZZio kPops
= Yy kPopsp® = 330, kPyph = (16%)2-

Using Little's Law, W = Lg/A = %(11}5)2 = Su(fjp)2.

W = Wg + E[service time] = w(fijp)g + i
Using Little's Law,

L=XW=xWo+3)=Lo+y=rufpm+i

Due to unlimited capacity, arrival rate = entering rate, so the
time average (W, Wy) is based on all customers.
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Single-Station Queues » M/M/s Queue

[Q)svsa |

Lo = fo:s(n —8)P, = fo:s(n —5)Popn = ZZio kPops
= Yy kPopsp® = 330, kPyph = (16%)2-

Psp

s P,
(1-p)?

Using Little's Law, W = Lg/A = % se(l—p)%"

W = Wg + E[service time] = w(fijp)g + i
Using Little's Law,

L=XW=xWo+3)=Lo+y=rufpm+i

Due to unlimited capacity, arrival rate = entering rate, so the
time average (W, Wy) is based on all customers.

Asp—1,all L, W, Lg and Wy tend to oo.
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Single-Station Queues » M/M /oo Queue

o By letting s — oo we get the M /M /oo queue as a limiting
case of the M/M/s queue.
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Single-Station Queues » M/M /oo Queue

o By letting s — oo we get the M /M /oo queue as a limiting
case of the M/M/s queue.

e Note: M /M /oo queue is always stable! (The server
utilization is always 0.)
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Single-Station Queues » M/M /oo Queue

o By letting s — oo we get the M /M /oo queue as a limiting
case of the M/M/s queue.

e Note: M /M /oo queue is always stable! (The server
utilization is always 0.)

o All the measures can be obtained by letting s — oo for those
in the case of M/M/s queue.

TUse the Taylor series (ZEEIREL): ¢ = 3, Zr.

n=0 n!
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Single-Station Queues » M/M /oo Queue

o By letting s — oo we get the M /M /oo queue as a limiting
case of the M/M/s queue.

e Note: M /M /oo queue is always stable! (The server
utilization is always 0.)

o All the measures can be obtained by letting s — oo for those
in the case of M/M/s queue.

e Or, one can still derive P, via the state space diagram'

CUOUEL - oo -

(n+2)p

TUse the Taylor series (FEEIREL): ¢ = 3, 1.

n=0 n!
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Single-Station Queues » M/M /oo Queue

Theorem 6 (Limiting Distribution of M /M /oo Queue)

For an M/M /o queue, its limiting (steady-state) distribu-
tion is given by

P = e—)\/p, (A/u’)n

, n>0.
n!
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Single-Station Queues » M/M /oo Queue

Theorem 6 (Limiting Distribution of M /M /oo Queue)

For an M/M /o queue, its limiting (steady-state) distribu-
tion is given by

P = e—)\/p, (A/u’)n

, n>0.
n!

e In steady state, the number of customers in an M /M /oo
station ~ Poisson(A/u).
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Single-Station Queues » M/M /oo Queue

Theorem 6 (Limiting Distribution of M /M /oo Queue)

For an M/M /o queue, its limiting (steady-state) distribu-
tion is given by

P = e—)\/p, (A/u’)n

, n>0.
n!

e In steady state, the number of customers in an M /M /oo
station ~ Poisson(A/u).

e Hence, L =37°  nP, = E [Poisson RV with mean ﬁ] =2
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Single-Station Queues » M/M /oo Queue

Theorem 6 (Limiting Distribution of M /M /oo Queue)

For an M/M /o queue, its limiting (steady-state) distribu-
tion is given by

P = e—)\/p, (A/u’)n

, n>0.
n!

e In steady state, the number of customers in an M /M /oo
station ~ Poisson(A/u).

e Hence, L =37°  nP, = E [Poisson RV with mean ﬁ] =2

e Using Little's Law, W = L/\ = l%

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time) 44 / 64


https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M /oo Queue

Theorem 6 (Limiting Distribution of M /M /oo Queue)

For an M/M /o queue, its limiting (steady-state) distribu-
tion is given by

P = e—)\/p, (A/u’)n

n > 0.
n!

In steady state, the number of customers in an M /M /oo
station ~ Poisson(A/u).

Hence, L = Y7° nP, = E [Poisson RV with mean ﬁ] =2

Using Little's Law, W = L/A = l%

Lo =0, Wg=0.
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Single-Station Queues » M/M/1/K Queue

o M/M/1/K Queue'

o Customers arrive according to a Poisson process with rate A.

e The service times are iid random variables with Exp(u)
distribution.

e The customers are served in an FCFS fashion by a single server.

e The capacity is K, K > 1, i.e., the maximal number of
customers waiting in queue + customers in server < K.

* A customer who finds the station is full (K customers there)
leaves immediately (lost).

e The entering rate, denoted as A, is smaller than the arrival
rate \.

e It is always stable (due to the finite capacity).

TM/M/l/K Queue C Birth and Death Process with Finite Capacity C Continuous-Time Markov Chain.
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Single-Station Queues » M/M/1/K Queue

o M/M/1/K Queue'

o Customers arrive according to a Poisson process with rate A.

e The service times are iid random variables with Exp(u)
distribution.

e The customers are served in an FCFS fashion by a single server.

e The capacity is K, K > 1, i.e., the maximal number of
customers waiting in queue + customers in server < K.

* A customer who finds the station is full (K customers there)
leaves immediately (lost).

e The entering rate, denoted as A, is smaller than the arrival
rate \.

e It is always stable (due to the finite capacity).

e In steady state
e P(station is full) = Pk.
e Entering rate A\ = A\(1 — Pg).

TM/M/l/K Queue C Birth and Death Process with Finite Capacity C Continuous-Time Markov Chain.
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Single-Station Queues » M/M/1/K Queue

e The state space diagram is as follows:

A A A A A A A
/= T
p 7 T T p Jz JZ
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Single-Station Queues » M/M/1/K Queue

e The state space diagram is as follows:

A A A A A A A
Y ~ A
1 T I T p T 7

Theorem 7 (Limiting Distribution of M/M/1/K Queue)

For an M/M/1/K queue, its limiting (steady-state) distri-
bution is given by

b Aoper ifp#1,
n — 1 .f _ 1 —_
e fp=1,

where p == A/u. (p is NOT the server utilization!)
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Single-Station Queues » M/M/1/K Queue

A A A A A A A
= =
u w I H u # 2

Proof.
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Single-Station Queues » M/M/1/K Queue

A A A A A A A
= =
u w I I u # 2

Proof. Due to Observations 1 & 2,

State Rate Process Leaves Rate Process Enters
0 Py = Pip
n,1<n<K-1 Po(n+X) = Py A+ Pyiip
K Py = Pr_1)
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Single-Station Queues » M/M/1/K Queue

A A A A A A A
= =
u w I I u # 2

Proof. Due to Observations 1 & 2,

State Rate Process Leaves Rate Process Enters
0 Py = Py
n,1<n<K-1 Po(n+X) = Py A+ Pyiip
K Py = Pr_1)
Rewriting these equations gives
PoA = Py,
P A=Poip+ (Pooad—Pop), 1<n<K-1,
Prp= Pr_1
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Single-Station Queues » M/M/1/K Queue

Or, equivalently,
PoX = Py,
P\ = Pop+ (PoX — Pip) = Pap,
PoX = Py + (PL\ — Pop) = Pap,
P A=Poiip+ (Pooad— Pop) = Poyip, 1<n<K-2,
Px_ 1A = Pgp.
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Single-Station Queues » M/M/1/K Queue

Or, equivalently,
PoX = Py,
P\ = Pop+ (PoX — Pip) = Pap,
PoX = Py + (PL\ — Pop) = Pap,
P A=Poiip+ (Pooad— Pop) = Poyip, 1<n<K-2,
Px_ 1A = Pgp.

Let p := A/p, solving in terms of Py yields
Py = Pyp,
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Single-Station Queues » M/M/1/K Queue

Or, equivalently,
PoX = Py,
P\ = Pop+ (PoX — Pip) = Pap,
PoX = Py + (PL\ — Pop) = Pap,
P A=Poiip+ (Pooad— Pop) = Poyip, 1<n<K-2,
Px_ 1A = Pgp.

Let p := A/p, solving in terms of Py yields
Py = Pyp,
Py = Pip = Pyp”,
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Single-Station Queues

Or, equivalently,
PoX = Py,
P\ = Pop+ (PoX — Pip) = Pap,
PoX = Py + (PL\ — Pop) = Pap,

P A= Pyap+ (Pn—1>\ - Pn,u) = Poyapt

Px_ 1A = Pgp.

Let p := A/p, solving in terms of Py yields
Py = Pyp,
Py = Pip = Pyp”,
P,=PF,_1p=PFp", 1<n<K.
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Single-Station Queues

Or, equivalently,
PoX = Py,
P\ = Pop+ (PoX — Pip) = Pap,
PoX = Py + (PL\ — Pop) = Pap,
PoX = Ppjip+ (Pooad = Pup) = Puyap,
Px_ 1A = Pgp.

Let p := A/p, solving in terms of Py yields
Py = Pyp,
Py = Pip = Pyp”,
P,=PF,_1p=PFp", 1<n<K.

PO 1— K+1
Since 1 = XK P, = P,XE o7 = 1-p

. ifp#1,
Py(K+1), ifp=1,

» M/M/1/K Queue

1<n<K-2,

we have,
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Single-Station Queues

Or, equivalently,
PoX = Py,
P\ = Pop+ (PoX — Pip) = Pap,
PoX = Py + (PL\ — Pop) = Pap,

» M/M/1/K Queue

Pn/\:Pn+1/1+(Pn—1>\_PnN):Pn+1,l1'y 1<n<K-2,
Px_ 1A = Pgp.
Let p := A/p, solving in terms of Py yields
Py = Fyp,
Py = Pip = Pyp?,
P,=P,1p=PFPyp", 1<n<K.
1-pitt if p£1,

P

if p#1, Po=1ba, and P,={800 1<n<K;
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Single-Station Queues

Or, equivalently,
PoX = Py,
P\ = Pop+ (PoX — Pip) = Pap,
PoX = Py + (PL\ — Pop) = Pap,

» M/M/1/K Queue

Pn/\:Pn+1/1+(Pn—1>\_PnN):Pn+1,l1'y 1<n<K-2,

Px_ 1A = Pgp.
Let p := A/p, solving in terms of Py yields
Py = Fyp,

Py = Pip = Pyp?,
P,=P,1p=PFPyp", 1<n<K.

P

ifp#1, Po= b, and Pn=<1:,£2¢’1, l<n<K,
pr:]., PO_K_H' and P K_H' ].S?’LSK
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Single-Station Queues » M/M/1/K Queue

o If p#£1,
K
L=>%_onP,
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Single-Station Queues » M/M/1/K Queue

o If p#£1,
K 1—p)p™
L= Z =0 nb, = Zn:O n L,ﬁzﬁl
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Single-Station Queues » M/M/1/K Queue

o If p#£1,

_ K _ K (I=p)p™ _ _1=p K n
L=3%n—gnbn= anonlfplﬂl = 1-pKF1 2Zun=0"'P
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Single-Station Queues » M/M/1/K Queue

o If p#£1,
_ K _ K (I=p)p™ _ _1=p K n
L=3%n—gnbn= anonlfplﬂl = 1-pKF1 2Zun=0"'P
_ _1-p p=(K+1)pKt 4+ KpK+2
T 1-pKH (1-p)?
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Single-Station Queues » M/M/1/K Q

o If p#£1,
_ K _ K A=p)p™ _ _1-p K n
L=3%_onb,= Zn:onl,pxﬂ = 1_pkT1 > n—o NP
_ _1-p p=(K+D)pNT4KpE*T2 _ p 1 (K41)pN+Kpht!
T 1-pkHl (1-p)? T 1-p 1—pk+1 :

49 / 64

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3 Spring 2022 (full-time)


https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Single-Station Queues » M/M/1/K Q

o If p#£1,
_ K _ K A=p)p™ _ _1-p K n
L=3%n—gnbn= Zn:onl,pxﬂ = 1 pRAT > n=o P
_ _1-p p=(K+D)pNT4KpE*T2 _ p 1 (K41)pN+Kpht!
T 1-pkHl (1-p)? T 1-p 1—pk+1 :
e lf p=1,
_ K _ K 1 _ 1 (K+1)K _ K
L=3onPn= Zn:OnK-i-l — K+l 2~ 2
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Single-Station Queues » M/M/1/K Queue

o If p#£1,
_ K _ K A=p)p™ _ _1-p K n
L=3%n—gnbn= Zn:onl,pxﬂ = 1 pRAT > n=o P
_ _1-p p=(K+D)pNT4KpE*T2 _ p 1 (K41)pN+Kpht!
T 1-pKH (1-p)? T I-

P 17pK+1 .

e lf p=1,

- K o K 1 _ 1 (K+1)K _ K
L= _onb,= Zn:OnK-i-l = K11 2 =72

e [P[station is full] = Pk.
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Single-Station Queues » M/M/1/K Queue

o If p#£1,
_ K _ K A=p)p™ _ _1-p K n
L=3%onbn=2_ NI RFT = T_,K+1 > n—o NP
_ _1-p p=(K+D)pNT4KpE*T2 _ p 1 (K41)pN+Kpht!
=2 )

T1-pkH (1-p)? p 1—pht1

e lf p=1,

_ K _ K 1 _ 1 (K+1)K _ K
L_En:OnP_Zn:OnK—i-l_K-H 2 =72

e [P[station is full] = Pk.

o Entering rate A\c = A(1 — Pxk).
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Single-Station Queues » M/M/1/K Queue

If p#1,
K K 1—p)p" 1— K
L=3%onbn=2_ ”Lp%)ﬁl = 1,pr+1 > n—onP"

_ _1-p p=(K+D)pNT4KpE*T2 _ p 1 (K41)pN+Kpht!
=2 _

T1-pkH (1-p)? p 1—pht1

e lf p=1,
- K o K 1 _ 1 (K+1)K _ K
L=3onban= Zn:OnK—H =Kf1 2~ 2

[P[station is full] = Pg.

Entering rate A\c = A(1 — Pk).

The server utilization = \¢/pn = p(1 — Pk).
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Single-Station Queues » M/M/1/K Queue

[Q)svsa |

If p#1,
K K 1—p)p" 1— K
L=3%onbn=2_ ”Lp%)ﬁl = 1,pr+1 > n—onP"

_ _1-p p=(K+D)pNT4KpE*T2 _ p 1 (K41)pN+Kpht!
=2 _

T 1-pkAt (1-p)? p 1—pk+1
If p=1,

- K o K 1 _ 1 (K+1)K _ K
L=3onPa=2 0 "gAa T k1 2 2

[P[station is full] = Pg.
Entering rate A\c = A(1 — Pk).
The server utilization = \¢/pn = p(1 — Pk).

ASp—)OO,L—)K,l—PK%O, p(l—PK)—>1.
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Single-Station Queues » M/M/1/K Queue

e For those entered the station
o The expected sojourn time W = L/\, = ﬁ.
1L

L - |
* The expected waiting time Wo =W — & = 15755 —
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» M/M/1/K Queue

Single-Station Queues

e For those entered the station
» The expected sojourn time W = L/
e The expected waiting time Wy =W — % = ﬁ — ,l;

_ L
e = X(1-Px)"

e For ALL the arrivals (those who are lost have 0 sojourn time
and waiting time)

e The expected sojourn time W' = (1 — Px)W +0 =

¢ The expected waiting time /¢, = (1 — Px)Wgq +0
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» M/M/1/K Queue

Single-Station Queues

e For those entered the station
» The expected sojourn time W = L/
e The expected waiting time Wy =W — % = ﬁ — ,l;

_ L
e )\(lfpj() :

e For ALL the arrivals (those who are lost have 0 sojourn time

and waiting time)
e The expected sojourn time W' = (1 — Px)W +0 = %
0= L 1-Pg
=L T

¢ The expected waiting time 1/(, = (1 — Px)Wq +

e The expected queue length Ly = AW =L — p(1 — Px),
or, = AW, =L — p(1 — Pk).
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» M/M/1/K Queue

Single-Station Queues

e For those entered the station
* The expected sojourn time 1V = L/\, = ﬁ.
i_ L 1
— XM1-Pk) we

e The expected waiting time Wy =W — m

e For ALL the arrivals (those who are lost have 0 sojourn time

and waiting time)
e The expected sojourn time W' = (1 — Px)W +0 = %
0= L 1-Pg
=L T

* The expected waiting time /¢, = (1 — Px)Wq +

e The expected queue length Ly = AW =L — p(1 — Px),
or, = AW, =L — p(1 — Pk).

¢ Asp—00,1-Pg—=0p(1-Pg)—1L—-K Log—K-1
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» M/M/1/K Queue

Single-Station Queues

e For those entered the station
* The expected sojourn time 1V = L/\, = ﬁ.
i_ L 1
— XM1-Pk) we

e The expected waiting time Wy =W — m
e For ALL the arrivals (those who are lost have 0 sojourn time

and waiting time)
e The expected sojourn time W' = (1 — Px)W +0

L
X.
¢ The expected waiting time 1/, = (1 — Px)Wq +0 =

1—Pg

L _
A o

0
e The expected queue length Ly = AW =L — p(1 — Px),
or, = AW, =L — p(1 — Pk).

¢ Asp—00,1-Pg—=0p(1-Pg)—1L—-K Log—K-1

e If pis fixed and A — oo:
A= Pr) =, W= 5 W — £ W — 0, Wi, — 0.
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» M/M/1/K Queue

Single-Station Queues

e For those entered the station
* The expected sojourn time 1V = L/\, = ﬁ.
i_ L 1
— XM1-Pk) we

e The expected waiting time Wy =W — m
e For ALL the arrivals (those who are lost have 0 sojourn time

and waiting time)
e The expected sojourn time W' = (1 — Px)W +0

L
X.
¢ The expected waiting time 1/, = (1 — Px)Wq +0 =

1—Pg

L _
A o

0

e The expected queue length Ly = AW =L — p(1 — Px),
or, = AW, =L — p(1 — Pk).

¢ Asp—00,1-Pg—=0p(1-Pg)—1L—-K Log—K-1

e If pis fixed and A — oo:
A= Pr) =, W= 5 W — £ W — 0, Wi, — 0.
K-1

A

e If \is fixed and p — O:
(1-Pg)—= 5, W =00, Wg =00, W = £, W, —

50 / 64
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Single-Station Queues » M/M/s/K Queue

o M/M/s/K queue' is a generalized version of M/M/1/K
queue. (K > s)

e The state space diagram is as follows:

OsOsiiecs0sCele0

o Let s =1, it becomes the M/M/1/K queue.
o Let s = K, it becomes the M/M/K/K queue.

e There is no M/M/oo/K queue!

TM/M/l/K Queue C M/M/s/K Queue C Birth and Death Process with Finite Capacity C CTMC.
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Single-Station Queues » M/M/s/K Queue

Theorem 8 (Limiting Distribution of M/M/s/K Queue)

For an M/M/s/K queue, its limiting (steady-state) distri-
bution is given by

S

£30)"

i=0 K

where p := \/(sp), (p is NOT the server utilization!) and

et ifp#£1,

0=
(K - 35), if p=1,

and

n

%<5> , ifo<n<s,

Pn =g A
%p", ifs+1<n<K,K>s+1.
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Single-Station Queues » M/M/s/K Queue

Theorem 8 (Limiting Distribution of M/M/s/K Queue)

For an M/M/s/K queue, its limiting (steady-state) distri-
bution is given by

S

£30)"

i=0 K

where p := \/(sp), (p is NOT the server utilization!) and

et ifp#£1,

0=
(K - 35), if p=1,

and

n

%<5> , ifo<n<s,

Pn =g A
%p", ifs+1<n<K,K>s+1.

o The server utilization = \./(sp) = p(1 — Pxk).
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Single-Station Queues » M/G/1 Queue

o M/G/1 Queuef

e Customers arrive according to a Poisson process with rate \.

e The service times are iid random variables with arbitrary
distribution (mean: L, variance: o?).

e The customers are served in an FCFS fashion by a single server.

e The capacity is unlimited, i.e., waiting space is unlimited.

e M/G/1 queue is stable if and only if A < p.

TM/G/I queue has an embedded discrete-time Markov chain.
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Single-Station Queues » M/G/1 Queue

o M/G/1 Queuef

e Customers arrive according to a Poisson process with rate \.

e The service times are iid random variables with arbitrary
distribution (mean: L, variance: o?).

e The customers are served in an FCFS fashion by a single server.

e The capacity is unlimited, i.e., waiting space is unlimited.

e M/G/1 queue is stable if and only if A < p.

o Let m? = (i)2 + 02, and the server utilization p :== \/u < 1.
o P(the server is idle) =1 — p.
- Wo =5
© Lo =A\Wq ="
s W=Wo+l=pmo 41
« L=2W =Lo+Mp=5"5+p.

TM/G/I queue has an embedded discrete-time Markov chain.
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Single-Station Queues » M/G/1 Queue

o M/G/1 Queuef

e Customers arrive according to a Poisson process with rate \.

e The service times are iid random variables with arbitrary
distribution (mean: L, variance: o?).

e The customers are served in an FCFS fashion by a single server.

e The capacity is unlimited, i.e., waiting space is unlimited.

e M/G/1 queue is stable if and only if \ < p.

o Let m? = (i)2 + 02, and the server utilization p :== \/u < 1.
o P(the server is idle) =1 — p.
- Wo =5
© Lo =A\Wq ="
s W=Wo+l=pmo 41
« L=2W =Lo+Mp=5"5+p.

e For M /G /oo, the measures are the same as those in M/M /.

TM/G/I queue has an embedded discrete-time Markov chain.
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O Queueing Networks

» Jackson Networks
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Queueing Networks

e Queueing Network (multiple-station queueing system)

o Customers can move from one station to another (for different
service), before leaving the system.
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Queueing Networks

e Queueing Network (multiple-station queueing system)

o Customers can move from one station to another (for different
service), before leaving the system.

Station 2

Station 1

Figure: Illustration of Queueing Networks
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Queueing Networks » Jackson Networks

o Jackson Queueing Network (first identified by [Jackson (1963)))f

@ The network has J single-station queues.

@ The jth station has s; servers and a single queue.

© There is unlimited waiting space at each station (infinite
capacity).

O Customers arrive at station j from outside according to a
Poisson process with rate A;; all arrival processes are
independent of each other.

® The service times at station j are iid random variables with
Exp(p;) distribution.

TJackson network is an J-dimensional continuous-time Markov chain.
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Queueing Networks » Jackson Networks

o Jackson Queueing Network (first identified by [Jackson (1963)))f

@ The network has J single-station queues.

® The jth station has s; servers and a single queue.

© There is unlimited waiting space at each station (infinite
capacity).

O Customers arrive at station j from outside according to a
Poisson process with rate A;; all arrival processes are
independent of each other.

® The service times at station j are iid random variables with
Exp(p;) distribution.

® Customers finishing service at station i join the queue (if any)
at station j with routing probability p;;, or leave the network
with probability p;o, independently of each other.

TJackson network is an J-dimensional continuous-time Markov chain.
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Queueing Networks » Jackson Networks

o Jackson Queueing Network (first identified by [Jackson (1963)))f

@ The network has J single-station queues.

® The jth station has s; servers and a single queue.

© There is unlimited waiting space at each station (infinite
capacity).

O Customers arrive at station j from outside according to a
Poisson process with rate A;; all arrival processes are
independent of each other.

® The service times at station j are iid random variables with
Exp(p;) distribution.

® Customers finishing service at station i join the queue (if any)
at station j with routing probability p;;, or leave the network
with probability p;o, independently of each other.

@ A customer finishing service may be routed to the same station
(i.e., re-enter).

TJackson network is an J-dimensional continuous-time Markov chain.
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Queueing Networks » Jackson Networks

e The routing probabilities p;; can be put in a matrix form as

follows: -
P11 P12 P13 - PiJ
P21 P22 P23 - P2J
P:= | P31 P32 P33 - P3J
| bJ1 PJj2 PJ3 - PJJ |

e The matrix P is called the routing matrix.
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Queueing Networks » Jackson Networks

e The routing probabilities p;; can be put in a matrix form as

follows: -
P11 P12 P13 - PiJ
P21 P22 P23 - P2J
P:= | P31 P32 P33 - P3J
| PJ1 PJ2 PJ3 - PJJ |

e The matrix P is called the routing matrix.

e Since a customer leaving station i either joints some other
station, or leaves, we must have

J
Spitpo=1 1<i<J.
j=1
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[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 3


https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Queueing Networks » Jackson Networks

e Example 1: Tandem Queue

A, =10 Station 1 Station 2 Station 3
. piz =1 P23 =1
s;=2 s;=3 s3=1
=6 =4 3 =12 P =1
30
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Queueing Networks » Jackson Networks

e Example 1: Tandem Queue

A, =10 Station 1 Station 2 Station 3
. piz =1 P23 =1
s;=2 s;=3 s3=1
=6 =4 =12
H Hz H3 P =1
0 1 0
P=1]0 0 1
0 0 O
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Queueing Networks » Jackson Networks

e Example 1: Tandem Queue

A =10 Station 1 Station 2 Station 3
i s =2 Pz =1 =3 P23 =1 o1
=6 up =4 uz =12 P =1
0 1 0
P=1]0 0 1
0 0 O

e Example 2: General Network

A =1
Station 2
A =8 s, =3 l—— 0.6
0.6 m=4
Station 1
s1=2 A3 =3 0.4 0.5
=6 0.2 l
Station 3
s3=1 =— 04
0.2 s =12
0.1
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Queueing Networks » Jackson Networks

e Example 1: Tandem Queue

A =10 Station 1 Station 2 . Station 3
=1 -
i o =2 P12 =3 P23 o1
=6 up =4 uz =12 P =1
0 1 0
P=1]0 0 1
0 0 O
e Example 2: General Network
A =1
Station 2
=8 =3  |5—> 06
Hy =4
0.6
Station 1 0 06 02
5 =2 =3 04 05 P=]0 0 04
m=6 02 | 0 05 0.1
Station 3
s3=1 L 04
02 12 N
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Queueing Networks » Jackson Networks

e Recall that customers arrive at station j from outside with
rate \;.

e Let b; be the rate of internal arrivals to station j.
e Then the total arrival rate to station j, denoted as a;, is given

b
Y aj =X +bj, 1<j<.J.
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Queueing Networks » Jackson Networks

e Recall that customers arrive at station j from outside with
rate \;.

e Let b; be the rate of internal arrivals to station j.

e Then the total arrival rate to station j, denoted as a;, is given
by .
aj =X\ +bj, 1<5<J.
e |f the stations are all stable
e The departure rate of customers from station 7 will be the
same as the total arrival rate to station ¢, namely, a;.
e The arrival rate of internal customers from station i to station
j is AiPij -
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Queueing Networks » Jackson Networks

e Recall that customers arrive at station j from outside with
rate \;.

e Let b; be the rate of internal arrivals to station j.

e Then the total arrival rate to station j, denoted as a;, is given
by .
ajz)\j—i—b-, 1<5<J.
e If the stations are all stable
e The departure rate of customers from station 7 will be the

same as the total arrival rate to station ¢, namely, a;.
e The arrival rate of internal customers from station i to station

j is AiPij -

o Hence, b; = X7 aipi;, 1<j<J.
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Queueing Networks » Jackson Networks

e Recall that customers arrive at station j from outside with
rate \;.

e Let b; be the rate of internal arrivals to station j.

e Then the total arrival rate to station j, denoted as a;, is given
by .
aj=)\j+b', 1<5<J.
e |f the stations are all stable
e The departure rate of customers from station 7 will be the
same as the total arrival rate to station ¢, namely, a;.
e The arrival rate of internal customers from station i to station

Jis a;pij.
° Hence, bj = Z;IZI AiPij, 1 < j < J.
e Substituting in the pervious equation, we get the traffic

equations: .
a; = Aj +Z;]:1aipz’j. 1< < J.
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Queueing Networks » Stability

o Leta' =[aj ag -+ ay] and AT = [\ Ay -+ AJ], the traffic
equations can be written in matrix form as
a'=\"T+d"P,
or
a'(I-P)=\T,
where I is the J x J identity matrix.
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Queueing Networks » Stability

o Leta' =[aj ag -+ ay] and AT = [\ Ay -+ AJ], the traffic
equations can be written in matrix form as
a'=\"T+d"P,
or
a'(I-P)=\T,
where I is the J x J identity matrix.

e Suppose the matrix I — P is invertible, the above equation
has a unique solution given by

am=AT(I-P)L,
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Queueing Networks » Stability

o Leta' =[aj ag -+ ay] and AT = [\ Ay -+ AJ], the traffic
equations can be written in matrix form as
a'=\"T+d"P,
or
a'(I-P)=\T,
where I is the J x J identity matrix.

e Suppose the matrix I — P is invertible, the above equation
has a unique solution given by

am=AT(I-P)L,

e The next theorem states the stability condition for Jackson
networks in terms of the above solution.
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Queueing Networks » Stability

Theorem 9 (Stability of Jackson Networks)

A Jackson network with external arrival rate vector A and
routing matrix P is stable if:

(1) I — P is invertible; and

(2) a; < s;p; foralli =1,2,...,J, where a; is given by the
traffic equations.
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Queueing Networks » Stability

Theorem 9 (Stability of Jackson Networks)

A Jackson network with external arrival rate vector A and
routing matrix P is stable if:

(1) I — P is invertible; and

(2) a; < s;p; foralli =1,2,...,J, where a; is given by the
traffic equations.

e Example 1: Tandem Queue

4 =10 Station 1 Station 2 Station 3
Piz=1 P23 =1
\ s1=2 ! s;=3 s3=1 \
w =6 =4 3 =12 Pao =1
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Queueing Networks » Stability

Theorem 9 (Stability of Jackson Networks)

A Jackson network with external arrival rate vector A and
routing matrix P is stable if:

(1) I — P is invertible; and

(2) a; < s;p; foralli =1,2,...,J, where a; is given by the
traffic equations.

e Example 1: Tandem Queue

4 =10 Station 1 Station 2 Station 3
Piz=1 P23 =1
\ s1=2 ! s;=3 s3=1 \
w =6 =4 3 =12 Pao =1

01 0 10 T
P:[o 0 1]_ )\:[0 ,a'=X"(I-P)"'=[101010].
0 0 0
Stable.
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Queueing Networks » Examples

e Example 2: General Network

A=1

Station 2

1, =8

l s =3 s— 0.6
Hy =4
Station 1 / 0 06 0.2
s =2 ls=3 04 05 P=|0 0 04
4 =6 0.2 | 0 05 0.1
Station 3

s3=1 I=—> 04
0.2
=12
H3 30‘1
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Queueing Networks » Examples

e Example 2: General Network

Ay =1

l

Station 2

2 =8

l Sz = i s—— 06
M2 =
o / 0 06 02
s =2 A3=3 0.4 0.5 P == 0 0 0.4
=6 K | 0 05 0.1
Station 3
= 04

s3=1

=12 |

>
I
| —
wW = 0o

] . a’=A"(I—-P)'=[810.79.9] = Stable.
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Queueing Networks » Examples

e Example 2: General Network

|
Station 2
M l: 8 =3 |l 06
, =4
Station 1 / - 0 0.6 0.2
s =2 A3=3 04 05 P=|0 0 04/}
4 =6 0.2 | 0 05 0.1
Station 3
0.2 :33:112 3041 o
- 8 1
A=|1], a"=X"(I~-P)'=[810.79.9] = Stable.
L 3 ]
If A9 is increased to 4,
- g
A=|4]|, a"=X(I—-P)'=[814.611.6] = Unstable.
L 3 ]
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Queueing Networks » Limiting Behavior

e Let L;(t) be the number of customers in the jth station in a
Jackson network at time t.
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Queueing Networks » Limiting Behavior

e Let L;(t) be the number of customers in the jth station in a
Jackson network at time t.

e Then the state of the network at time t is given by
[L1(2), La(t), -, L (8)].
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Queueing Networks » Limiting Behavior

e Let L;(t) be the number of customers in the jth station in a
Jackson network at time t.

e Then the state of the network at time t is given by
[L1(2), La(t), -, L (8)].

e When the Jackson network is stable, the limiting distribution
of the sate of the network is

P(ny,ng,...,ny)
= tliglo]P{Ll(t) == nl,Lg(t) =nNn9,..., LJ(t) == nJ}.
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Queueing Networks » Limiting Behavior

Let L;(t) be the number of customers in the jth station in a
Jackson network at time t.

Then the state of the network at time ¢ is given by
[L1(2), La(t), -, L (8)].

When the Jackson network is stable, the limiting distribution
of the sate of the network is

P(ny,ng,...,ny)
= tliglo]P{Ll(t) == nl,Lg(t) =nNn9,..., LJ(t) == nJ}.

It is a joint probability.
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Queueing Networks » Limiting Behavior

Theorem 10 (Limiting Distribution of Jackson Network)

For a stable Jackson network, its limiting (steady-state) dis-
tribution is given by

P(nl,ng,...,nJ) :P1(n1)P2(n2)~-PJ(nJ),
forn; =0,1,2,...and j =1,2,...,J, where P;(n) is the

limiting probability that there are n customers in an M/M/s;
queue with arrival rate a; and service rate y;.
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Queueing Networks » Limiting Behavior

Theorem 10 (Limiting Distribution of Jackson Network)

For a stable Jackson network, its limiting (steady-state) dis-
tribution is given by

P(nl,ng,...,nJ) :P1(n1)P2(n2)~-PJ(nJ),
forn; =0,1,2,...and j =1,2,...,J, where P;(n) is the

limiting probability that there are n customers in an M/M/s;
queue with arrival rate a; and service rate y;.

e The limiting joint distribution of [Ly(¢),..., L;(t)] is a product of
the limiting marginal distribution of L;(t), j=1,...,J.
= Limiting behavior of all stations are independent of each other.
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Queueing Networks » Limiting Behavior

Theorem 10 (Limiting Distribution of Jackson Network)

For a stable Jackson network, its limiting (steady-state) dis-
tribution is given by

P(nl,ng,...,nJ) :P1(n1)P2(n2)~-PJ(nJ),
forn; =0,1,2,...and j =1,2,...,J, where P;(n) is the

limiting probability that there are n customers in an M/M/s;
queue with arrival rate a; and service rate y;.

\. J

e The limiting joint distribution of [Ly(¢),..., L;(t)] is a product of
the limiting marginal distribution of L;(t), j=1,...,J.
= Limiting behavior of all stations are independent of each other.

e The limiting distribution of station j is the same as that in an
isolated M /M /s; queue with arrival rate a; and service rate ;.
(a;'s are solved from the traffic equations.)
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